
Proceedings of the IASS 2024 Symposium  
Redefining the Art of Structural Design 

August 26-30, 2024, Zurich Switzerland 
Philippe Block, Giulia Boller, Catherine DeWolf,  

Jacqueline Pauli, Walter Kaufmann (eds.) 
 
 

 
 
Copyright © 2024 by Zargar, S.H and Brown, N.C 
Published by the International Association for Shell and Spatial Structures (IASS) with permission. 
 

Predicting robotic constructability in early design of a panelized 
structure: a surrogate model for a mobile robotic arm 

Seyed Hossein ZARGAR*a, and Nathan C. BROWN a 

a The Pennsylvania State University, Department of Architectural Engineering, 
 University Park, PA 16802 

* szz188@psu.edu 
 

Abstract 
Multi-objective optimization has the potential to improve structural design quality through performance 
simulation. Yet at many scales, these simulations can take too long to be used during optimization, 
leading to the development of surrogate models that rapidly predict performance based on prior data. 
However, in robotic path planning and simulation, achieving reliability involves navigating through 
detailed considerations and trial-and-error steps. Despite widespread research on robotic fabrication, 
manual problem resolution persists in many aspects of robotic motion simulation. In response, this study 
utilizes machine learning to assist structural designers in gaining an initial understanding of robotic 
constructability early in design. Constructability is defined through metrics that quantify potential 
benefits of constructing one possible design versus another. This paper presents surrogate models for 
panelized timber structures that estimate robotic constructability when employing a single mobile 
robotic arm for discrete material assembly. While the design space is initially defined by variables for 
the orientation and configuration of structural elements, as well as rules for the interconnectivity of 
subspaces, generalized features in the massing and framing of structural designs are extracted for use in 
the training process. Each initial design is evaluated for constructability metrics, including robot material 
delivery time and feasibility of assembly sequences, before these results are used to train the surrogate 
models for prediction on new designs. While basic geometric features can predict delivery time, 
additional model features are needed to improve prediction accuracy for other constructability metrics. 

Keywords: Autonomous construction, robotic constructability assessment, surrogate modelling, multi-objective optimization, 
design space exploration  

1. Introduction 
The practice of multi-objective optimization holds the promise of elevating design quality by integrating 
performance simulations into the design process [1]. Tools such as Karamba3D [2] and ClimateStudio 
[3] have been pivotal in embedding performance simulations within the optimization phase, particularly 
during conceptual design. These simulations provide insights into the potential performance of designs, 
facilitating informed decision-making [4]. However, the effectiveness of these simulations is often 
hampered by the time they require to execute, especially for complex design problems. This has led to 
research focused on creating surrogate models. These models are designed to estimate performance 
outcomes using past data, providing a faster option than traditional simulation [5]. While a surrogate 
model can easily be custom-built for a specific parametric model using sampled, simulated data to link 
original parametric variables to prediction outputs, there are ongoing efforts to make surrogate models 
more generalizable and flexible, such that they can be reused across design situations [6], [7], [8]. 

At the same time, there is growing research interest in robotic construction methods, which can involve 
simulating assembly sequences to understand the constructability implications of design decisions [9]. 

mailto:szz188@psu.edu


Proceedings of the IASS Symposium 2024 
Redefining the Art of Structural Design 

 

 

 2 

 

Yet in robotic path planning and simulation, achieving reliability is challenging. It requires meticulous 
consideration of numerous variables, as well as extensive trial and error [10]. Robotic construction, 
despite being a subject of considerable research, still heavily relies on manual intervention for resolving 
problems related to robotic motion simulation [11]. This indicates a gap in the automated understanding 
and resolution of issues that arise during the simulation of robotic movements [12]. 

Addressing this gap, this study proposes and tests the use of machine learning (ML) to assist designers 
by providing an early understanding of the robotic constructability of parametric designs. 
Constructability is assessed using metrics that quantify the relative advantages of constructing one 
design over another. By leveraging machine learning, this study seeks to enhance the design process by 
facilitating earlier and more efficient evaluation of robotic constructability, enabling its consideration 
alongside other performance feedback, which can affect how designers approach optimization for 
robotic-assisted construction.  This paper presents surrogate models for panelized timber structures that 
estimate robotic constructability when employing a single mobile robotic arm for structural panels 
delivery and assembly. While the design space is initially defined by rules about the connectivity of 
subspaces and variables that define the configurations of structural elements, generalized features of the 
overall massing and framing of the  structural designs are extracted for model training. As explored in a 
prior study [13], this research is directed towards more generalized surrogate models for estimating 
design schemas by training on extracted design characteristics that are present in many conceptual design 
representations. 

Figure 1 shows the study framework for creating a design space and training the surrogate model to 
assess robotic constructability in panelized timber structures. The process begins by performing a design 
space formulation for a small single-story home, which includes defining rules, variables, and 
associative relationships. Next, the methodology involves identifying and extracting new features, 
focusing on 'geometry' and 'quantity' data for training the surrogate models. These parameters are then 
utilized in the multi-output regression model, which applies hyperparameter tuning to enhance the 
model's prediction accuracy. The model produces estimated outputs, which are compared with actual 
calculated performance-related outputs. This phase evaluates embodied carbon as a baseline structural 
metric, as well as robot travel time to deliver all panels in construction site, and the feasibility of using 
a robotic arm for path planning and assembling wall and roof panels. Ultimately, through evaluating 
various surrogate models trained on different combinations of features, the impact on model accuracy is 
investigated. 

 
Figure 1: Overall research process 

2. Research background 

2.1. Early design exploration and robotic constructability 
In recent years, the potential for robotics in off-site construction has been recognized, particularly with 
the widespread adoption of automated, repetitive tasks such as computer-aided manufacturing 
equipment [14]. The use of robotics in such settings has revolutionized manufacturing, allowing for 
increased precision, efficiency, and flexibility in the production of construction components [15]. This 
innovation in off-site construction practices showcases the capabilities of robotics in handling complex 
tasks, reducing manual labor, and enhancing the quality of construction components [16]. The 
application of robotics extends beyond manufacturing, promising transformative changes in how 
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construction projects are conceived and executed, emphasizing the growing importance of integrating 
robotic technology in the construction industry [17]. 

Despite promising advancements in off-site construction, the deployment of robotic assembly directly 
on construction sites has faced substantial challenges [18]. Historically, efforts have been aimed at 
integrating robotic systems into on-site construction workflows. However, the transition has been less 
than smooth, with the adoption of robotic technology in on-site construction remaining limited. One of 
the primary obstacles to integrating robotics into on-site construction has been the reliance on a ‘robot-
oriented design’ approach [19]. This method alters the design of structures to suit robotic assembly 
methods. While it aims to integrate design and construction processes more closely, it often necessitates 
compromises in design quality and flexibility. The rigidity of these approaches has impeded the wider 
adoption of robotics in on-site construction, highlighting the need for methodologies that better balance 
robotics integration without compromising design integrity [20]. However, entirely restructuring the 
design based solely on robotic capabilities may not be the ideal solution. Incorporating elements of 
robotic construction at the early design stage could serve as a strategic method to subtly steer the design 
direction towards improved robotic constructability [9]. This approach seeks to enhance the feasibility 
of robotic construction without the need for significant compromises in design. Nonetheless, the 
complex, trial-and-error nature of robotic path planning presents a significant challenge. Designers are 
tasked with integrating these considerations, a process that requires an understanding of both the 
capabilities and limitations of robotic construction techniques [21]. 

2.2. Machine learning and robotic constructability 
The advent of machine learning offers a promising solution to some challenges facing design for robotic 
construction, particularly by enabling the consideration of robotic construction methods in early stages 
[22]. Due to the improvement of machine learning methods, particularly artificial neural networks, fast 
computing tools and ML have been leveraged using data from the design and construction processes 
[23]. For example, designers can perform prediction tasks on design and performance optimization [24], 
[25]. Related research includes designing a deep learning framework for energy optimization [26], 
identifying effective design variables for embodied carbon reduction [13], and creating commercial 
prediction models using initial big data [27]. However, there is limited research on constructability 
analysis for use in optimization, especially regarding robotic capabilities. 

Machine learning algorithms can analyze vast amounts of data to predict and optimize construction 
processes, allowing for a more seamless integration of robotic systems into both off-site and on-site 
construction [28]. By incorporating machine learning insights from the outset of the design process, it 
becomes possible to create designs that are both optimized for robotic construction and uncompromised 
in terms of performance quality and flexibility [9]. This approach not only enhances the feasibility of 
robotic construction but also expands the solution space, allowing for innovative structures that are 
tailored to the capabilities of robotic construction [22]. This paper thus attempts to integrate robotic 
constructability assessment into the early design process for timber panel structures. It focuses on 
simplifying the complex path planning process of robotic construction to establish quantitative measures 
of robotic feasibility on construction sites. Coupled with embodied carbon as an additional performance 
criterion, it trains surrogate models and then evaluates the accuracy of these models. 

3. Methodology 

3.1. Formulating the design space 
Figure 2 shows the original rules and design variables used to create the single-family home building 
geometry. The building is organized into four distinct sub-spaces, which are constructed with Cross-
Laminated Timber (CLT) panels serving both as roof and wall structural elements. The panel dimensions 
come from commercially available products from Mercer [29]. The formulation of the design spaces 
incorporates diverse rule-based layout configurations, which can often be more flexible than purely 
parametric definitions, leading to more versatility and adaptability in the design process. On top of these 
rule-based layout configurations, several parametric variables control the roof slope direction and panel 
rotations across the building layout. The rotated boundary panels play a dual role. First, they act as 
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openings for windows and doors, enhancing natural light penetration and ventilation. Second, they 
provide accessibility features, ensuring ease of movement and functionality of the spaces created. These 
rotated panels also contribute to the aesthetic value of the design, pushing the boundaries of conventional 
architectural layouts.  

To align with the operational capabilities of the specific robotic platform, which will be discussed in 
Section 3.3, the dimensions of the wall panels are restricted. This limitation ensures that all panels can 
be efficiently carried and assembled by the robotic system, optimizing the construction process while 
exploring the potential of robotic constructability in residential building projects. The mix of subspaces 
rules and variables were used to generate and assess 1,000 unique models (Figure 2). These models 
underwent performance evaluation for their structural efficiency and robotic constructability. 

 
Figure 2: Main variables and rules forming the design space 

3.2. Extracting new features 
While the initial formulation of this design space facilitates the creation of innovative building blocks, 
computational designers often create their own rules or parametric variables for specific reasons. This 
variability in potential parametric definitions, even for a shared typology such as panelized timber 
structures, underscores the need for a more robust and generalizable approach to feature extraction. This 
will enable the development of surrogate models capable of predicting a wider range of conditions within 
the same problem domain [13]. The next step in the problem is thus to identify and extract these more 
general features. As illustrated in Figure 3, these features could pertain to the 'geometry' aspects of a 
design, such as width or length of different slices and subspaces. Alternatively, they could relate to 
'quantity' features, which involve analyzing the structure for the number of structural panels required in 
different orientations. These geometry and quantity features are crucial for understanding the structural 
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and spatial characteristics of a building and can be derived from any building massing regardless of 
software environment. Models made of such features may effectively accommodate the variability 
inherent in the initial phases of design formulation while predicting design performance. 

 
Figure 3: New general features for surrogate models 

3.3. Evaluating performance: embodied carbon and robotic constructability  
To enable future performance prediction, the performance of each design in the original dataset is first 
simulated. Figure 4 shows the performance evaluations in this paper, which are the embodied carbon 
impacts for structure and three aspects of robotic constructability: robot travel time, a cumulative 
construction viability rating for all wall panels, and a similar viability rating for all roof panels. To assess 
the embodied carbon, each of the 1,000 generated models underwent a structural analysis, where every 
panelized structural element was checked for compliance with the Ultimate Limit State (ULS) criteria 
across all loading scenarios [30]. The structural analysis included 15 different loading scenarios based 
on ASCE 7–16, covering dead, live, and wind loads, with particular attention to four load combinations 
that account for wind loads acting from perpendicular directions, reflecting the effect of asymmetrical 
building plans. Upon confirming strength checks for the structural elements, the maximum lateral 
displacement for each model was calculated to verify lateral stiffness under the loading. This step 
validated each design's feasibility for further examination against Serviceability Limit States (SLS) 
criteria. Once the fully analyzed, sized structure was generated, a coefficient of 0.437 kgCO2e/kg for 
‘Timber, CLT’ from the ICE database v3 [31] is used to convert structural mass into embodied carbon.  

This study assumed the MX3DP robot [32] as the primary robotic platform for tasks such as picking up 
panels from their deployment point and moving them to their designated locations. The simulations 
account for robotic arm path planning to accurately place the elements. The MX3DP system, capable of 
constructing up to two-story structures, utilizes a computer-controlled, 6-axis robotic arm with a 3.2m 
extended reach. This system is supported by a custom lift mechanism on a mobile platform, enhancing 
its operational efficiency. The evaluation of robotic constructability was divided into three distinct areas, 
beginning with the calculation of the time required for the robotic arm to transport all panels across the 
construction site to their intended locations. Following this, a multi-point viability rating for actual path 
planning was created to rate how effectively the robotic arm could handle and accurately place each 
structural element in its intended location. 

This evaluation was grounded on the necessity for 6-axis robotic arm movement and rotation, simulated 
using the Robot plugin in Grasshopper [33], that avoids collisions with itself and the already assembled 
structure, ensuring smooth delivery of panels. Given the complexity of path planning, this viability rating 
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is based on grouping all panel placements into six scenarios for wall panel placement and four scenarios 
for roof panel placement. These scenarios were allocated to each structural panel based on a set of 
criteria, including their location, connectivity with other structural elements, potential for clashing, and 
the ease with which the robot could handle and place them accurately. A robotic path planning scenario 
is assigned to each panel, which is then given a per-panel viability score. An overall rating between 0 
and 1 is then generated for the whole design by combining all individual scores and remapping, with 
distinct assessments allocated for both wall and roof panels. For example, for a single geometry in the 
design space, if the robot could place all wall panels in the easiest possible way, the entire building 
would get a top score of 1 for viability of wall panels. Yet in real-world building projects with complex 
geometry, a perfect score is not often realistic. This is because of the many different panel types, how 
they fit together, and the complex moves the robot must make around parts of the building that are 
already assembled. As a result, each design receives distinct wall and robot viability scores to present to 
the designer. 

 
Figure 4: Overview of performance-related criteria for design space exploration and model training 

3.4. Training surrogate models 
Based on this dataset, surrogate models are then developed to predict the four performance outputs: 
embodied carbon (kg CO2), robot travel time (minutes), viability of utilizing the robot for wall panels 
(scaled from 0 to 1), and viability for utilizing the robot for roof panels (scaled from 0 to 1). These 
models incorporate both the geometric and quantity features, which may prove crucial for capturing the 
intricacies of the design space. An evaluation framework was established to compare the efficacy of 
XGBoost [34] and CatBoost [35] regressors, alongside an ensemble strategy, using multi-output 
regression. The dataset is initially segmented, dedicating 80% to training and 20% to testing, ensuring a 
robust training foundation and a reliable evaluation platform. Addressing the challenge of incomplete 
data, a mean imputation technique is employed for input feature correction, followed by a 
standardization process to normalize the data, setting the stage for accurate and unbiased model training. 

Both XGBoost and CatBoost models are configured with specific hyperparameters and encapsulated 
within a MultiOutputRegressor wrapper [36], acknowledging the multi-faceted nature of the regression 
task at hand. Then, the training process for each model is conducted, leveraging the standardized test 
dataset for generating predictions. In pursuit of enhanced predictive performance, an ensemble approach 
is introduced, averaging the predictions from both models. The performance of combined ensemble 
approach is evaluated using R-squared (R2) scores, providing insights into the predictive accuracy and 
reliability of the models.  

Finally, a classification model is trained to demonstrate an alternative approach for enhanced decision-
making during the early design of robotic construction projects. By strategically combining 
constructability outputs from earlier sections, this part aims to develop a unified robotic viability score, 
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at a resolution that more appropriately represents the potential error inherent in surrogate models for 
design. This classification process is envisioned to act as a comprehensive indicator of a design's overall 
suitability for robotic construction. It considers travel time alongside the specific challenges presented 
by walls and roofs. A Random Forest Classifier is employed, leveraging grid search to systematically 
evaluate the hyperparameters. 

4. Results and discussion 
This section presents the findings from each surrogate model. It first shows a geometry-based surrogate 
model compared to a quantity-based surrogate model for each prediction output, before providing the 
classification model that combines all features and predictions.  

4.1. Geometry-based surrogate model 
The surrogate model trained on geometric features reveals a mixed performance across different outputs, 
underscoring the complexity of constructability prediction (Figure 5). For robot travel time, the model 
demonstrates considerable accuracy (R2 score of 0.91). Given their comparable number of panels in 
design space, it was predicted that solely through geometric data, the surrogate model could gain an 
understanding of robot movement time. This is due to the direct connection between the movement time 
and the quantity of panels that need to be transported from the pick-up location to the final placement 
point. Conversely, the model's accuracy diminishes notably when predicting embodied carbon and 
viability rating (wall), with both outputs registering negative R2 scores around -0.30. These low scores 
may suggest that the geometry features alone do not add enough insight for accurate prediction. The 
model for viability rating (roof) shows moderate predictive success (R2 score of 0.36), capturing under 
half of the variance in the target variable. This outcome indicates potential areas for enhancement, 
particularly due to the simplistic approach adopted for robotic path planning concerning roof panel 
installation, as delineated by the research for only four scenarios. Future enhancements to the path 
planning methodology could substantially improve the model's predictive performance. 

 
Figure 5:Actual vs predicted: surrogate models trained based on ‘geometry’ features 

4.2. Quantity-based surrogate model 
Figure 6 shows the results for surrogate models trained on quantity features, which seem to enhance the 
predictability of robotic constructability outcomes as most R2 scores are improved. The model attains an 
R2 score of 0.75 in predicting embodied carbon, which shows a much deeper understanding of the 
impact of quantity of structural elements on embodied carbon. The predictive strength extends to robot 
travel time (0.95), viability rating (wall) (0.67), and viability rating (roof) (0.60), which can help give 
early information based on estimates for ease of constructability that can be confirmed in later path 
planning. However, scores for two viability rating models may be lower than desirable even for early 
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design, which underscores the necessity for more comprehensive data regarding the various components 
of path planning. This is especially true given the intricacy involved in current architectural design 
projects concerning robotic arm movement, collision detection, and other criteria. With this in mind, the 
final model presented in this paper tries to combine all three outputs of constructability into one overall 
rating for robotic viability. The goal is to see if any clear patterns could be found in the models that 
might provide designers and engineers with constructability insights early in the design. 

 
Figure 6: Actual vs predicted: surrogate models trained based on ‘quantity’ features 

4.3. Classification of combined constructability outputs 
Figure 7 illustrates the performance of the classification model, which divides designs into ‘poor’, 
‘moderate’, and ‘good’ categories. The accuracy of 0.89 in predicting the robot viability class is 
respectable, particularly in differentiating between the good and poor categories. As depicted in Figure 
7 and its building geometry examples, the classification into a ‘poor’ rating seems to be associated with 
the complexity and connectivity of panels, with more intricate panel orientations and connections. The 
‘good’ models tend to avoid designs with sharp corners or small roof elements, which pose challenges 
for robotic arms. The further comparison between models demonstrates that despite similarities in the 
overall geometry of buildings, factors such as panel orientation and the simplicity of intersections can 
influence robotic viability. These aspects make it more feasible for robots to manage construction based 
on previously defined robotic scenarios. While these classifications should not be the sole factor guiding 
design exploration, analyzing the 200 test models provides insights into critical considerations for 
constructability in the early stages of design. All models used in this study are analyzed considering the 
robotic scenarios assigned to them, enabling an in-depth investigation of the effect of different design 
properties on the resulting classification. This can help designers refine their geometry with respect to 
robotic constructability and other performance objectives. 

5. Conclusion 
This research employs machine learning to aid structural designers in acquiring preliminary insights into 
robotic constructability at the early stages of design. Through the examination of geometry-based and 
quantity-based surrogate models, it underscores the complexity of accurately predicting constructability 
outcomes such as robot travel time, embodied carbon, and robot viability ratings. The geometry-based 
models demonstrated a strong correlation with robot travel time but were less effective in predicting 
other constructability outcomes, highlighting the limitations of relying solely on geometric data for 
comprehensive constructability assessment. Conversely, quantity-based models showed improved 
predictability across several metrics. Finally, the classification of combined constructability outputs into 
single robot viability class further enriches our understanding of how design factors like panel 
orientation and simplicity of intersections can enhance robotic construction efficiency. 
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It is worth noting that the constructability models in this paper rely on assigning each panel a viability 
score based on assumptions about sequence and assembly paths for elements in a given configuration. 
This does not lead to full path planning for construction of the entire structure, or exhaustively covers 
all potential paths for assembly, as this remains difficult and computationally expensive to do in a 
parametric study. Nevertheless, the use of viability ratings significantly increases the precision of these 
constructability assessments compared to what is typically available at this stage, potentially paving new 
paths for incorporating constructability into early structural design exploration. It achieves this by 
viewing the problem through the lens of assembly categories and conducting regression and 
classification based on typical features available in design models. Future research could concentrate on 
further refining the methodology to enhance model accuracy, as well as a more comprehensive 
methodology for path planning. These efforts would address limitations in categorized robotic viability 
rating scenarios, further pushing the limits of robotic constructability assessment in early design. 

 
Figure 7: Classification model performance based on combined robotic constructability outputs 
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