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Abstract 
Structural designers pursuing high-performance design must typically make decisions based on 
perceived tradeoffs. As an alternative to the extreme paradigms of deploying rules of thumb and 
blackbox optimization, a new paradigm of “performance-informed, human-driven design” is proposed 
in which designers extract data-driven insights from a provided design space to inform decision-making. 
The four-step computational framework entails selecting a sample representative of the design space of 
interest, training a machine learning model, computing gradients of the model, and computing influence 
metrics. Applied to the case study of a long-span structure, this paper demonstrates how this gradient-
based approach can offer a data-driven way to support and augment intuitions about performance-driven 
design. Choice of structural typology is demonstrated to be most associated with large changes of GWP. 
As designers make decisions that refine the design space of interest, the framework can be iteratively 
applied at neighborhoods of the original design space, here revealing how priorities of other decisions 
(span, live load, embodied carbon coefficient) vary by typology. This case study application showcases 
how decision-making insights tailored to specific problems can be derived from intricate mixed-variable 
design domains, underscoring the potency of such approaches in informing system-level design 
processes for low-carbon structures.  

Keywords: design space exploration, gradients, computational design, parametric design, embodied carbon, long-span 
structures, conceptual structural design, sensitivity analysis, generative AI 

1. Introduction 
Does a timber beam or a steel truss result in a lighter structure? Between shortening the span and 
decreasing the load demand, which results in a more efficient structure? Structural designers pursuing 
high-performance design must typically make decisions based on perceived tradeoffs. To address these 
complex decision-making processes, designers can typically choose among a few paradigms, such as 
optimization and deploying rules of thumb. Optimization delivers design solutions from a blackbox 
without conveying information about the design problem (“the lightest design is made of timber”). 
Deploying rules of thumb is a way for designers to implement intuition based on general design 
experience (“using timber usually results in lower embodied carbon”), but it is less quantitatively 
informed for specific design problems where generalized rules of thumb may not apply everywhere in 
the design space. Moreover, it is not intuitive to quantitatively compare the effects of design decisions 
and evaluate trade-offs within these existing paradigms (“How does shortening the span of the concrete 
beam compare to using timber instead?”). 
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A new paradigm of performance-driven structural design is proposed where designers are empowered 
to make quantitatively informed decisions based on data from the design space of the specific design 
problem at hand. This framework is made possible by a four-step computational procedure, initially 
proposed in [1]. Applied here to the case study of a long-span structure, it is now possible to answer the 
example questions posed above: performance data of specific design spaces can be leveraged to 
quantitatively confirm or supplement intuition and rules of thumb. Performance trade-offs that were 
previously un-intuitive, such as choice of material against span, are made comparable through this 
framework. The approach also balances specific insights from local neighborhoods of the design space 
against general insights from the global design space, while contributing to validation and augmentation 
of “rules of thumb” at a global level of design. The results demonstrate a paradigm shift from 
“performance-driven design” to “performance-informed, human-driven design.” 

2. Background and literature 
Many methods are available to optimize and explore continuous design spaces, or design spaces where 
all variables are numerical. Gradients are key in these methods: they measure change in performance 
relative to change in each continuous variable. Gradients are mathematically defined and readily 
available; their computation via finite differencing [2] or automatic differentiation of machine learning 
models [3] have been demonstrated for applications of design space exploration. In contrast, design 
space exploration methods are limited in mixed-variable design spaces, or design spaces that contain 
both continuous variables and discrete variables (choices between discrete values, such as structural 
material). Optimization methods such as mixed integer programming exist for optimizing in mixed-
variable design spaces, but there are limited methods for navigating through them. 

A framework for computing “influence metrics” in mixed variable design spaces was first proposed in 
[1], establishing a way to define and compare “gradients” across continuous and categorical variables. 
While [1] applies the framework to the design of gridshells, in this paper, the framework is applied to a 
high-impact design problem of designing a low-carbon long-span structure, demonstrating the 
framework’s ability to augment intuition in the complex design spaces of low-carbon structural design. 

3. Methodology 

3.1 Framework for computing influence 
An overview of the method specific to low-carbon structural design is described in this section and in 
Figure 1. The first step of generating design data is key for the designer to communicate the extents of 
the design space. The data include the design varaibles and a single performance objective. More details 
on the conditional variational autoencoder (cVAE) are available in [3] and on the computing influence 
metrics in [1], [4]. 

 

Figure 1: Four-step methodology for determining influence metrics from a given design space. 

Gradients are mathematically defined for continuous variables, but not for categorical variables. In this 
framework, a definition for “gradients” of performance relative to each category of a categorical variable 
is proposed as the difference in performance between a reference design and the same design with the 
categorical variable switched to the category of interest (Figure 2) [4]. These gradients are comparable 
across continuous and discrete variables due to variable pre-processing; the distributions of continuous 
variables are standardized (i.e. their pre-processed distribution has a mean of 0 and standard deviation 
of 1), while categorical variables are one-hot-encoded (Figure 3). As a result, one unit of change is 
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associated with a) 1 standard deviation of a continuous variable’s distribution in the design space and b) 
1 change of category for categorical variables (Figure 4). Performance is also standardized (Figure 3), 
meaning the gradients are unitless. 

 

Figure 2: Example definition of gradients for a categorical variable’s categories. 

 

Figure 3: Pre-processing of variables and performance objective before cVAE training. 

 

Figure 4: Comparability of gradients with respect to continuous variables, and “gradients” with respect to 
categories of categorical variables. 

3.2 Long-span design problem 
The long-span design problem used as a case study application of this framework is inspired by the 
Kimbell Art Museum by Louis Kahn and August Komendant (1972) and its extension by Renzo Piano 
Building Workshop (2013). The former features a concrete barrel beam spanning 30 m, and the latter 
spans similar modules with a different typology: pairs of glulam beams. How does global warming 
potential (GWP) intensity change with choice of spanning typology relative to other design decisions? 
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This question guiding decision-making in early-stage design can be addressed by applying the 
framework introduced in 3.1. For the design data, a variety of structural typologies are designed to 
support a long-span roof (Figure 5): steel and timber girders and trusses, and an elliptical barrel beam of 
reinforced concrete (a simplified version of the original cycloid-shaped barrel beam, which was pre-
stressed). 

 

Figure 5: Five long-span typologies designed for a long-span roof design problem and the position of the 
depicted parameters in the design space. A visual sampling of the design space is available in the Appendix. 

This design space and assumptions mock up an early-stage exploration of a long-span design problem. 
A bottom-up parametric structural model is developed to generate the design space by taking design 
variables and computing GWP intensity using material quantities and embodied carbon coefficients 
(ECCs); details on this model are provided in Table 1. Each structural typology has a different design 
approach, which are detailed in Table 2. Finally, material assumptions are presented in Table 3. 

Table 1: Design parameters and constraints for generating the parametric dataset representing the design space. 

Design variables Depth:span ratio: [0.036 to 0.100] 
Number of secondary structures: [2 to 6] 
Typology: {steel built-up girder, glulam pair of beams, steel round-tube truss, timber square-
section truss, reinforced concrete elliptical barrel beam} 
Span: [25.0 to 35.0 m] 
Live load: [1.2 to 3.0 kN/m2] 
Embodied carbon coefficient (ECC) percentile: [20, 80] (see Table 3) 

Other constraints Tributary width: 7 m 

Performance objective GWP intensity, or !"#
$%%&	($)(

, where 
 roof	area = span	 × 	tributary	width = 𝐿 × 7	m, and 
𝐺𝑊𝑃 = ∑𝑆𝑀𝑄 × 𝐸𝐶𝐶, where SMQ = structural material quantities (kg) and ECC = embodied 
carbon coefficient of the material (kg CO2e/kg) [5] 
A1-A3 ECCs are used, and ranges are detailed in Table 3. 
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Design space sampling technique Latin Hypercube sampling, 500 designs per typology (2500 total designs) 

Load cases and combinations • Distributed dead load DL (by weight; for magnitudes see Appendix) 
• Distributed live load LL (for magnitudes see Design variables in Table 1) 
• LLasym: distributed live load applied on half of the primary span 
• DL+LL 
• DL+LLasym  

Engineering assumptions Strength: maximum utilization of 70% for DL+LL and DL+LLasym 
Serviceability: Maximum displacement of L/360 under LL 
Trusses: strength and serviceability uniquely enforced; see Table 2. 
Sections are automatically sized to the smallest section in a provided series meeting the 
engineering design criteria (using Karamba’s Optimize Cross-section component [6]).  
Connection quantities are not included. 

Table 2: Design approach for each structural typology based on design variable of structural depth. Each 
structural material is assumed to have a single grade, detailed in Table 3. 

Structural typology: 
primary system 

Design approach based on master design variable of structural depth, d 

Steel girder Minimum dimensions of the built-up plate girder are selected based on rules of thumb [7]. The minimum weight 
girder section from sections exceeding these minima: 

• Minimum web thickness tw = d/150, pick from series incremented 0.5 cm above the minimum 
• Minimum flange thickness tf = 1.1tw, pick from series incremented 0.5 cm above the minimum 
• Minimum flange width bf = d/6, pick from series incremented 1 cm above the minimum 

Placement and design of transverse stiffeners on the plate girder: 
• Transverse stiffeners are placed everywhere a secondary member frames into the girder 
• If the spacing of secondary members exceeds 2d, at the outer quarters of the primary span (from each 

end to L/4), the minimum number of additional stiffeners are placed evenly between secondary 
members at a maximum spacing of 2d 

• Stiffener thickness is designed based on required moment of inertia of the stiffener, Ist, per AISC [8] 
Section G2.2  

Secondary system: 
• Select minimum weight from typical American W-section series, enforcing a minimum depth of d/3 

Deflection under live load calculated from structural analysis model 
Pair of glulam 
girders 

Dimensioning the width of the glulam girders: 
• Solve for minimum width of an individual girder based on d and slenderness ratio (RB) limit of 50 

(NDS [9] 3.3.3.6) 
• For the analysis model, a single girder was modeled, with a minimum width of twice the minimum 

width calculated above for an individual glulam girder 
• Assume the glulam beams within the pair are spaced 1.5 m apart for higher moment of inertia against 

lateral buckling 
Secondary system: softwood timber beams with depth-to-width ratio of 6 
Assume additional 10% GWP for the steel needed to activate composite action between the girders (see Renzo 
Piano Building Workshop’s Kimbell Art Museum Expansion for a built example) 
Deflection under live load calculated from structural analysis model 

Steel truss 2 panels between each secondary member 
Cross-sections: hollow tube with diameter-to-thickness ratio of 20 
Secondary system: select minimum weight from typical American W-section series 
Maximum utilization of 35% (determined empirically) applied in lieu of enforcing deflection constraint 

Timber truss 2 panels between each secondary member 
Cross-sections: solid square softwood 
Secondary system: same as for glulam beam pair 
Maximum utilization of 30% (determined empirically) applied in lieu of enforcing deflection constraint 

Reinforced concrete 
barrel beam 

Elliptical barrel geometry created by stretching a semicircular arc with radius d to fit the tributary width 
The light well gap at the top of the arc is defined as a 30-degree sector 
Calculating thickness t of the barrel beam: 

• Maximum moment Mmax calculated under DL+LL and DL+LLasym, assuming 15 cm thickness for 
initial DL estimate 

• Minimum required area of concrete “ribs” at top of beam, Amin,c, dimensioned to carry compression of 
Mmax/0.75d (0.75d approximates a reduction of the inner lever arm due to placement of required steel 
from bottom of section) 

• Each curb in the pair is assumed to have depth of 4t and width of 2t. Solve for t given Amin,c and 
Atotal=16t2 

Reinforcing by volume for material quantities and GWP calculation: larger of {required area of steel as 
proportion of full cross-section; 2% by volume} 
No secondary system needed; “number of secondary structures” design variable is not applicable 
Deflection under live load calculated from structural analysis model of an equivalent semi-elliptical shell with a 
concrete material that had a tension strength equal to its compressive strength 
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Table 3: 20th and 80th percentile embodied carbon coefficients of materials as converted from [10]. See 
Appendix for reference values in their original units and other material values (specific weight, strength, 

stiffness). 

Material Typology and elements 

Embodied Carbon Coefficient (A1-A3) 
[kg CO2e/kg] 

20th percentile 80th percentile 
Steel plate Steel girder (primary system) 1.55 

kg CO2e / kg 
1.65 

kg CO2e / kg 
Steel hot-rolled section Steel girder (secondary system) 

Steel truss (secondary system) 
0.650 

kg CO2e / kg 
0.850 

kg CO2e / kg 
Steel hollow section Steel truss (primary system) 1.40 

kg CO2e / kg 
1.70 

kg CO2e / kg 
Glue-laminated timber Pair of glulam girders (primary) 

 
0.275 

kg CO2e / kg 
0.628 

kg CO2e / kg 
Softwood timber 
(ECCs of glulam by volume used conservatively) 

Pair of glulam girders (secondary) 
Timber truss (primary and secondary) 

0.392 
kg CO2e / kg 

0.897 
kg CO2e / kg 

Ready-mix concrete, 27.6 MPa (4000 psi) 
normal weight 

Reinforced concrete barrel beam (partial 
by volume, see Table 2) 

0.121 
kg CO2e / kg 

0.176 
kg CO2e / kg 

Rebar, fabricated Reinforced concrete barrel beam (partial 
by volume, see Table 2) 

0.739 
kg CO2e / kg 

0.925 
kg CO2e / kg 

4. Results and discussion 

4.1 Exploratory data analysis (EDA) 
Plotting the performance metric of GWP intensity against each design variable of interest is a typical 
exploratory data analysis (EDA) technique done as a first pass at understanding the scope of the design 
space (Figure 6). Each plot offers a projected view of the multi-dimensional design space, and a few 
limited trends between GWP intensity and each variable can be observed. For example, while there are 
large differences in GWP intensity between different typologies, each typology shows large enough 
variations in GWP intensity (due to the high dimensionality of other variables) that there are overlaps: 
some concrete barrel beams have similar performance to glulam girder designs. Other slight trends such 
as an increase of GWP intensity with span, live load, and ECC percentile are evident as expected, while 
the relationship between GWP intensity and depth is complex and varies across different typologies. 
These limited insights in the high-dimensional mixed-variable design space motivate the computation 
of influence metrics for this dataset. 

 

Figure 6: GWP intensity vs. design variables in the provided design space. 

4.2 Machine learning training 
A variant of the cVAE deployed in [3] was trained on the design data. Layer widths of [64, 32] were 
used for both the encoder and decoder, resulting in an acceptable R2 value of 0.987 in predicted vs. true 
GWP intensity values on test data not seen during training, with a root mean-squared error of 7.1 kg 
CO2e/m2.  

4.3 Influence metrics 
For more details on how each type of influence metric is computed, the reader is referred to the 
framework as introduced in [1]. The influence metrics in Figure 7 are appropriate for high-level design 
decision-making: of the design variables and ranges provided in the original design space, GWP 
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intensity changes the most with choice of typology, though with large variance across the design space 
(large whisker on the influence bar).  

 

Figure 7: Overall influence metrics of design features on GWP intensity. 

For finer level of insights, signed influence metrics are useful (Figure 8). Selecting the timber truss is 
the decision found to be most associated with large reductions in GWP intensity, followed closely by 
the steel truss and the glulam pair. Selecting the concrete barrel beam is shown to be most associated 
with large increases in GWP intensity, followed moderately by selecting a steel girder. Choice of 
typology are decisions that dominate the extremes of signed influence. It is significant to be able to 
compare categorical against continuous variables within this framework. For example, the association 
of an increase in ECC percentile with very moderate increases in GWP intensity relative to selection of 
typology suggests that in this design space, the relative uncertainty of ECCs during early-stage design 
is not a hindrance: even if the full range of 20th to 80th percentiles of ECCs are considered, none are as 
influential on GWP as choice of typology. Similar conclusions can be made about choice of typology 
against the other continuous variables of span, structural depth, live load, and number of secondary 
structures. These insights are intentionally to be interpreted within the context of this design space, i.e. 
they are only applicable for the ranges of variables provided in the design dataset. 

 

Figure 8: Signed influence metrics of design decisions on GWP intensity. Large dark-blue bars indicate a large 
association with reductions in GWP intensity, and orange with increases. For continuous variable decisions, the 

sign of influence is associated with an increase in the continuous variable. 

4.4 Constricting or expanding the design space to inform decision-making at any stage of design 
What happens after influence metrics inform a decision? An advantage of the methodology as outlined 
in Figure 1 is that the designer has full control over the scope of insights by expanding or constricting 
the design space through the first step of provided design data. As an example, a designer might read 
Figure 8 and decide to eliminate steel girders and concrete barrel beams from the design space given 
their high influence on GWP increases. This neighborhood of the design space can be substituted into 
step 1 of Figure 1 to clarify which of the remaining decisions to prioritize. The updated signed influence 
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metrics (Figure 9) communicate that for the smaller design space under consideration, choosing the 
glulam girders can be a worse choice for GWP intensity than increasing span, live load, or ECC 
percentile. This is also often, but not always, true for choosing the steel truss. 

 

Figure 9: Signed influence metrics of design decisions on GWP intensity after removing the steel girder and 
concrete barrel beam from the design data. 

Another possible design scenario or iteration is that the designer decides on a particular typology and 
wants to understand the resulting priorities for this smaller neighborhood of designs. The resulting 
influence metrics of three possible typologies are shown in Figure 10. The differences in priorities 
among the three different typologies highlights how more tailored decision-making recommendations 
can be produced after narrowing the initially diverse design space. For example, Figure 10 (b) suggests 
that the designer who chooses a steel truss might be most concerned with the sensitivity of those designs’ 
GWP to live load; this makes sense intuitively because the steel truss has a low dead load compared to 
the other typologies, and live load would govern its material quantities. The designer who chooses to 
make decisions on a glulam girder (Figure 10 (a)) need not worry as much about span as the designer 
who chooses to make decisions on a concrete barrel beam (Figure 10 (c)). 

 

Figure 10: Signed influence metrics of design decisions on GWP intensity for the local neighborhood of each of 
three typologies: (a) glulam girders, (b) steel truss, (c) concrete barrel beam. 

Note that magnitudes of influence are mainly for comparative purposes within a design space and might 
not be comparable across different design spaces. For more details, the reader is referred to [1], [4]. 

5. Limitations  

5.1 Limitations in the parametric structural model of this case study 
In this model, A1-A3 embodied carbon coefficients are used, meaning that construction emissions are 
not reflected in GWP estimates. Construction stage emissions would differ greatly by structural 
typology: for example, the concrete barrel beam may require more emissions to construct due to the 
large amount of formwork. Connection quantities were also omitted but may introduce a premium on 
quantities for girder and truss typologies. Design rules for secondary members could also be further 
refined, but the focus in scope of this early-stage structural design example was on the typology of the 
primary member. The concrete beam typology includes roof-area spanning material, which gives it 
slightly higher material quantities than the other typologies. Including roof-area spanning material for 
the other typologies would affect the influence of “number of secondary structures” on GWP intensity 
due to the variable’s influence on the depth of spanning material.  Finally, some materials such as 
concrete are known to exhibit a relationship between strength and embodied carbon coefficients. In this 
study, a range of ECC values were allowed, but material grades were kept uniform. Accounting for 
interpolations between material strength and ECC (such as those provided in [10]) could improve 
estimates in material, and GWP, efficiency. 
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5.2 Limitations in the framework of computing influence metrics 
Of the steps in the framework outlined in Figure 1, the first step of producing a parametric model to 
generate synthetic data is the most time-consuming. (While possible to apply the framework on “wild” 
data of emissions measured from the industry, these data are typically not yet at suitable quality and 
quality for meaningful machine learning.) It takes time and expertise for designers to set up a parametric 
model and design parameters that cover the design space of interest, and this process is often iterative.  

One particular challenge in this process, regardless of field expertise, is developing the parametric model 
such that the design variables of the parametric design space drive an aspect of every structural typology. 
With different enough structural typologies and associated design approaches, it may get more and more 
difficult to identify parameters that are shared among typologies. For example, in this design example, 
the “ECC percentile” design variable was necessary to drive the ECC values of different materials used 
across different typologies. It was not possible to be typology-agnostic with every design variable: in 
this example, “number of secondary structures” was applicable to every typology except the reinforced 
concrete barrel beam. 

Despite these challenges in developing the parametric model to generate design data, once the parametric 
framework was finalized, the generation of 2500 designs for this design problem took 30-40 minutes, 
and the training of the machine learning and the computation of gradients and influence metrics took 
even less time (on the order of 60 seconds). The ultimate payoff of being able to compare decisions 
through the influence metrics is significant. There are also beneficial scenarios in which such parametric 
models and their trained models could be developed for often-used structural systems and be reused for 
multiple projects. 

6. Conclusion 
A framework for comparing change in performance relative to both continuous and categorical design 
variables is applied to a high-impact structural design problem of a low-carbon long-span roof. 
Designers typically make decisions during early-stage design based on experience and intuition, but this 
framework offers a way to validate and augment those intuitions in a data-driven way. For example, 
designers might have some intuition around a concrete beam being a heavier system and trusses being 
more materially efficient, but might not necessarily understand the magnitude with which those 
differences in material efficiency might relate to GWP intensity compared to changes in live load, span, 
or embodied carbon coefficients. The influence metrics produced by this approach (Figure 7, Figure 8) 
provide a data-driven and accessible snapshot (compared to high-dimensional EDA) for supplementing 
those intuitions. 

Applying this framework to other synthetic datasets of structural design can help clarify which decisions 
are worth taking in complex design spaces. Quality synthetic datasets of embodied carbon in structural 
systems are becoming more prevalent in the literature and in practice, such as multi-story structural 
systems with foundations [11], [12] and mass timber structural systems [13], [14], [15]. Leveraging 
these data are a key strategy for pursuing low-carbon design [16], both in developing a greater 
understanding of rules of thumb and in informing decision-making for specific design problems. 

Any performance-driven design problem must grapple with a balance of rules of thumb based on general 
intuition and recommendations based on the specificity of the design problem at hand. Data in such 
performance-driven design problems, such as low-carbon structural design, can be leveraged to help 
inform the latter approach of specificity. These findings demonstrate how this data can be utilized to 
effectively support these complex decision-making processes, empowering a paradigm of performance-
informed, human-driven design. 
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