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Abstract 

Free-form structural forms are widely used to design spatial structures for their irregular spatial 
morphology. Current free-form form-finding methods cannot adequately meet the material properties, 
structural requirements or construction conditions, which brings the deviation between the initial 3D 
geometric design model and the constructed free-form structure. Thus, the main focus of this paper is to 
improve the rationality of free-form morphology considering multiple objectives in line with the 
characteristics and constraints of material. In this paper, glued laminated timber is selected as a case. 
Firstly, machine learning is adopted based on the predictive capability. By selecting a free-form timber 
grid structure and following the principles of NURBS, the free-form structure is simplified into free-
form curves. The transformer is selected to train and predict the curvatures of the curves considering the 
material characteristics. After predicting the curvatures, the curves are transformed into vectors 
consisting of control points, weights, and knot vectors. To ensure the constructability and robustness of 
the structure, minimising the mass of the structure, stress and strain energy are the optimisation 
objectives. Two parameters (weight and the z-coordinate of the control points) of the free-from 
morphology are extracted as the variables of the free-form morphology to conduct the optimisation. The 
evaluation algorithm was selected as the optimal tool due to its capability to optimise multiple 
parameters. While optimising the two variables, the mechanical performance evaluation indexes such as 
the maximum displacement in the z-direction are demonstrated in the 60th step. The optimisation results 
for structure mass, stress and strain energy after 60 steps show the tendency of oscillation convergence, 
which indicates the efficiency of the proposal multi-objective optimisation. 

Keywords: Free-form structure, Form-finding, Machine Learning, Multi-objective optimisation, Material rationality 

1. Introduction 

As the regular architecture form could not meet the up-to-date aesthetic requirements, the distinct 
architectural expression and engineering challenges of free-form grid structures place them at the 
forefront of spatial design innovation [1]. The irregular forms put forward new challenges for the 
conventional design paradigms from design methods to design tools. These structures defy traditional 
modelling with complex surfaces that cannot be succinctly expressed through simple analytic functions, 
departing from conventional architectural forms. Historically, the genesis of such structures relied 
heavily on physical experimentation methods, such as the inverse hanging method for compression 
structures and the soap film technique for pre-stressed shapes [2], [3]. The emergence of computational 
graphics technologies, notably Bezier surfaces, B-splines, and Non-Uniform Rational B-splines 
(NURBS), has revolutionised the field of complex geometry design and optimisation [4], [5].  
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To achieve the complex form, some new criteria need to be met compared with traditional regular 
architectural design, such as smoothness, and geometric dimensions [6]. In addition, the deviation of the 
real project from the original design needs to be decreased if considering constraints like material, 
structural stiffness and manufacturing, which means that additional knowledge about geometry is 
essential in the optimum design [7]. 

Traditional design and optimization approaches often fall short in addressing these complex 
requirements, spotlighting the necessity for sophisticated optimization techniques capable of untangling 
the complexities of free-form structure [8]. The demand for new design techniques has led to the 
adoption and development of diverse computational methods and algorithms. Among these new 
techniques, optimisation algorithms [9] stand out due to their efficacy in addressing the multifaceted 
challenges inherent in the design and realisation of optimised structures. Related studies have shown 
that optimisation for structural performance effectively generates free-from structures with stable 
mechanical behaviour [10]. Different algorithms have been applied and developed to the topology and 
shape optimisation [11], for example, gradient descent [12], GA (Genetic Algorithm) [13], evolution 
algorithm [14] and NGSA-II algorithm [15]. Among the different algorithms, the optimisation objectives 
are various, including maximum displacement, element stress overall quality of the structure, and strain 
energy [16] by setting the coordinate of control points as the variable. However, in these multi-objective 
optimisation processes, the efficiency of the existing algorithm is not high, and the optimal results have 
low similarity to the initial surface before the optimisation [14].  

Under the context of calling for new technologies for rational free-form structures, machine learning 
(ML) has also shown its potential to generate free-form structures based on its data processing capability 
[17]. ML is a new ground-breaking technique that has been widely used in computer vision, image 
processes, natural language processes, and generative tasks [18]. In [19], augmenting finite element 
analysis for optimizing space frame structures, aiming to reduce computation times significantly through 
ML has been discussed. Based on the learning and analysis of the data from the collected data (e.g. 
images, graphics), ML can generate new data of the same type through deep neural networks (DNNs) 
[20] and generative adversarial networks (GAN) [21] in generative floor plans [22]. Other ML networks 
like long short-term memory (LSTM) can be applied to dealing with graphical information [23]. Since 
the complex geometric information of the free-form morphology can not be fully represented through 
graphics or images, the 2D application of these ML methods is one main limitation. 

In this study, ML is utilised to generate rational geometric information for free-form morphology 
considering the constraints from material properties by taking timber as the building material. Based on 
the predicted geometric information, the free-form morphology is further optimised for structural 
performance through evolution algorithms.  

2. Machine Learning Prediction for Material Rationality 

Quantifying the impact of building material properties on free-form morphology is challenging. The 
primary approach to using ML to predict the geometric information of free-form morphology involves 
using real free-form grid structures as the learning input. This input encompasses data about the extent 
to which building materials can be shaped. After training, ML can predict new curves based on the range 
of achievable shapes, as learned from previous cases of free-form structures. One significant advantage 
of using ML for prediction is its ability to integrate the design with material considerations effectively.  

2.1. Geometric Description for Free-form Morphology 

The mathematical model serves as a superior approximation method due to its high efficiency and 
accuracy. Among the various mathematical models, B-splines and NURBS are the most commonly 
utilized. Based on the rational B-spline, NURBS is developed by adding an extra parameter called 
weights. NURBS offers greater flexibility and adaptability across diverse geometric types than B-splines. 
Consequently, NURBS is the preferred method for describing the geometry of free-form structures. 

According to the definition of NURBS, the main factors that control the shape of the NURBS surface 
(or curve) are (1) the location of the control points, the number; (2) the weight factor, generally the larger 
the weight factor, the closer the surface (or curve) is to the control points; (3) the knot distribution of 
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parameters u,v and the order of the surface. The NURBS curve with control points is shown in  Figure 
1(a) and (b) shows the relationship between the NURBS surface and control points. 

    

  

(a) NURBS Curve (b) NURBS Surface 

Figure 1  NURBS curve and surface with control points 

A 𝑝 times NURBS curve is defined as: 

𝐶(𝑈) =
∑ 𝑁𝑖,𝑝(𝑢)𝜔𝑖𝑃𝑖

𝑛
𝑖=0

∑ 𝑁𝑖,𝑝(𝑢)𝜔𝑖
𝑛
𝑖=0

, 𝑎 ≤ 𝑢 ≤ 𝑏 (1) 

𝐶(𝑢) means the coordinate of a random point on the NURBS curve in x-y-z space, {𝑃𝑖} is the control 
point, 𝑁𝑖,𝑝(𝑢) , 𝑖 = 0,1, … , 𝑛 is the ith p times B-spline base function, which is called B-spline. {𝜔𝑖} 

is the weight factor. The coordinate of a random point on the NURBS surface can be expressed in the 
below formulation: 

𝑆(𝑢, 𝑣) =
∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝜔𝑖,𝑗𝑃𝑖,𝑗

𝑛
𝑗=0

𝑚
𝑖=0

∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝜔𝑖,𝑗
𝑛
𝑗=1

𝑚
𝑖=1

, 𝑎 ≤ 𝑢 ≤ 𝑏; 𝑐 ≤ 𝑣 ≤ 𝑑 (2) 

Where:𝑢,𝑣 are the parameters of the surface; 𝑝, 𝑞 are the number of powers of the surface; the surface 
is the segmentation functions about u,v; knot vectors 𝑈,𝑉 are combined by knots 𝑢,𝑣. For curved 
surfaces, {𝑃(𝑖,𝑗) } forms a control grid in two directions and the number of control points is (𝑛 +

1) × (𝑚 + 1) ; 𝑁𝑖,𝑝(𝑢) and 𝑁𝑖,𝑞(𝑣)  are base functions of 𝑢  and 𝑣  directions;  {𝜔(𝑖,𝑗) } is the 

weight factor  

2.2.Machine Learning Prediction Experiment 

Selecting the appropriate ML method for prediction tasks is crucial as it determines the types of data 
used for training and testing. In [24], the free-form structure is depicted through curves, which are then 
transformed into sequential datasets. Building on this method of information transformation, the 
Transformer model is chosen for handling the transformed sequential data in this study. Originally 
designed for natural language processing [25], Transformers have been successfully adapted for various 
sequence modelling tasks across spatial domains [26]. Their self-attention mechanism provides a 
sophisticated means to model relationships between different points along a curve, effectively capturing 
both local and global dependencies.  

To complete the prediction learning task, choosing the appropriate free-form case is critical. For this 
ML process, the Center Pompidou-Metz Model is utilized as a case study to extract data for the 
Transformer. The structural design of the Centre Pompidou-Metz features a weave pattern, constructed 
from glue-laminated timber, making it an excellent source of learning input shown in Figure 2. 



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 4 

 

 

Figure 2 3D model of the Centre Pompidou-Metz case 

2.2.1. Data Transformation 

The main difficulty for ML prediction application in free-form structural morphology is the extraction 
of the information, as most of the ML deals with the data in 1 or 2 dimensions. In this model, all timber 
beams and columns are curved to create a distinctive free-form shape. An essential step following the 
3D modelling process is to extract geometric information and convert it into discrete numerical values 
to serve as inputs for ML. Each beam or column in this model is characterised by six faces and 12 
boundary lines, which include four critical curves that define the geometry necessary to generate this 
unique curved structure. The data transformation process is presented in Figure 3.  

 

Figure 3 Data extraction and transformation process 

2.2.2. Training and Learning 

After establishing the dataset format, identifying the relevant features and the desired outputs is crucial 
for the prediction task. In this study, geometric information representing the free-form NURBS curve is 
extracted, including x-coordinate, y-coordinate, z-coordinate, position parameter, curvature, vector_x, 
vector_y, and vector_z. The features used to predict the curvature, vector_x, vector_y, and vector_z are 
the x-coordinate, y-coordinate, z-coordinate, and position parameters. For the pilot test, 16 curves are 
selected, each divided into 20 segments, resulting in 336 point samples. To enhance the dataset, K-fold 
validation is adopted, creating five folds with sample sizes of 3, 3, 3, 3, and 4, respectively. Following 
dataset preparation, the subsequent steps using the Transformer model include: 

After preparing the dataset, the following steps of using Transformer are as follows: 

 Positional encoding: This allows the model to recognize the position of each point in the 

sequence, crucial for maintaining the order of data in sequence processing; 

 Transformer encoder layer: This layer, which can be stacked, forms the encoder part of the 

Transformer, essential for processing the sequence data;  

 Modify the Transformer model: Adaptations are made so the model can take sequences of curve 

data as input and predict the desired geometric outputs; 

 Train the model: The model is trained with a batch size of 32 and over 100 epochs to ensure 

adequate learning. 
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 Evaluation of the model: Performance is assessed on a test set to gauge the effectiveness of the 

model under evaluation conditions; 

 Fine-tuning and Optimisation: Depending on initial results, adjustments are made to the model’s 

architecture, training parameters, and learning rate to optimize performance.  

By following the steps, the value of the loss function is shown in Figure 4. The training and testing 
results are shown in Figure 5. 

  

(a) Vector_x loss value (b) Vector_y loss value 

  

(c) Vector_z loss value (d) Curvature loss value 

Figure 4 Loss function value 

  

(a) Vector_x for divided points (b) Vector_y for divided points 

  

(c) Vector_z for divided points (d) Curvature for divided points 

Figure 5 Test results compared with the actual values 
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The loss function graphs for the curvature and the tangent vectors (X, Y, Z) depict the model's learning 
curve over successive epochs. The downward trajectory of the loss across all graphs signifies the 
Transformer model's ability to minimize error and improve its predictions over time. As seen in the 
provided graphs, there are observable gaps between the predicted and actual values for curvature and 
the components of the tangent vector (X, Y, and Z). Despite these discrepancies, the overall trend 
captured by the Transformer indicates a strong alignment with the actual data, substantiating the model's 
validity in capturing the essential patterns and tendencies of the structure's geometric properties.  

3. Multi-objective Optimisation for Free-Form Morphology 

Based on the tuned Transformer model, given the x-coordinate, y-coordinate, z-coordinate, and position 
parameter of the points, the NURBS curves meet the restrictions of the GLT and can be interpolated 
through curvature, vector_x, vector_y, and vector_z. In this case, three curves are selected to patch the 
free-form prototype surface in Figure 6 (a), which is arrayed to generate the surface shown in Figure 6 
(b).   

  

(a) Prototype surface (b) Array surface 

Figure 6 Example surface 

3.1. Strain Energy for Structural Rationality 

The optimisation method and objectives for structural mechanical rationality have a direct impact on the 
outcome of the morphology. The optimal objective is commonly set as displacement, stress, strain 
energy and others, and displacement and stress are vectors that reflect the structure's local characteristics, 
whereas stain energy is scalar.  

The determination of the interrelationships between mechanical properties is a critical issue to address 
during the morphology creation process. The structural balance equation is: 

𝐹 = 𝐾 ⋅ 𝛿 (3) 

F – Force vector of structure nodes 

K – Structural stiffness matrix 

𝛿 – Displacement vector of the structure 

When the structure is subjected to small elastic deformation, the strain energy  𝑈 is expressed as: 

𝑈 =  
1

2
𝐹𝑇𝛿 (4) 

Eq (4) deduces the relationship between strain energy and structure internal force. Research has 
demonstrated that when strain energy is selected as the objective function, as the strain energy of the 
structure decreases, not only does the stiffness of the structure increase, but the bending moments are 
greatly reduced, increasing the ultimate load capacity. Assuming that the load is constant, the structure's 
strain energy is proportional to the displacement of the structural nodes; that is, decreasing the 
displacement results in decreasing the strain energy. The smallest strain energy, smallest structural 
displacement, and largest structural rigidity are all mutually unified. 
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The strain energy is a scalar, and its value can be thought of as the sum of the strain energies of all the 
elements in the structure. Besides, the strain energy is unrelated to the selected coordinate system. In the 
global coordinate system, the strain energy equals the strain energy in the local coordinate system. In 
complex structure systems, the finite element method is commonly used to divide the structure into 
several elements when calculating them. 

𝑈 =  ∑ �̅�𝑖

𝑁

𝑖=1

 (5) 

Where: 

�̅�𝑖 – Strain energy of every element 

𝑁 – Total number of the elements in the structure  

3.2. Multi-objective Optimisation for Free-form Morphology 

To conduct multi-objective optimisation for the example free-form surface in Figure 6, the optimal 
model can be expressed as a nonlinear function on multidimensional space formed by vector 𝑃: 

𝑚𝑖𝑛{
𝑈(𝑃)
𝑀𝑎𝑠𝑠

𝜎
(6) 

The optimised objectives are set as the strain energy of gravity load and 0.02 mesh load, the mass, and 
the max stress in the z-direction Finding the minimum of 𝑈(𝑃) can be seen as solving the extreme 
value problem for nonlinear multivariate functions. The solution to the extreme value problem can be 
achieved by a one-dimensional search, which means the direction of descent of the objective function 
𝑈(𝑃), which is used to adjust the optimisation variables 𝑃 to gradually converge to the optimal solution. 

In the example free-form surface, the three curves are divided into 4 control points and 22 control points, 
respectively. The optimisation variables are chosen as the z-coordinate of the two control points of the 
two side curves and the weights of the 11th and 12th control points and the optimal results are shown in 
Figure 7. The optimal value for the mass remained within a narrow range, indicating a consistent 
reduction of about 3.6% from the original value. The curve's trend, displaying convergence in oscillation, 
underscores the effectiveness of the multi-objective optimization process. The optimal stress value 
achieved was 0.005, marking a substantial decrease from the original value of 0.013. The results 
fluctuated within a range of 0.005 to 0.011, with a minimum reduction of 15%. While the reduction in 

strain energy under gravity load—from 0.02 to 0.018—was modest, the results for the mesh load were 

more dramatic, with a decrease from nearly 3.5 to 1.1, corresponding to a 68% reduction. The visualised 
optimised results and comparisons of the initial, and 60th steps are compared in Figure 8 and Figure 9.  

4. Discussion 

The Transformer model proved to be exceptionally effective in handling the complexities associated 
with free-form designs. Its ability to process sequential 3D geometric data allowed for accurate 
predictions of structural forms. The successful application of this model underscores its potential beyond 
traditional natural language processing tasks, extending its utility to spatial and geometric data analysis.  
The variation between predicted and actual values, while present, does not detract from the utility of the 
Transformer in this predictive task. The gaps can be attributed to the inherent complexities of the free-
form structures and the challenges in capturing all the subtleties of three-dimensional geometry through 
machine learning. The integration of evolutionary algorithms was crucial in refining the machine-
generated designs to meet specific performance criteria. Significant improvements were observed in the 
multi-objective optimisation for mass, stress and strain energy validating the multifaceted capability of 
the algorithms. This research faces several notable limitations that could influence the applicability and 
effectiveness of the proposed methodologies in different free-form structure scenarios. First, the quality 
and quantity of data crucial for training the machine learning models are paramount, and any 
inadequacies here can significantly impair the models' accuracy. As for the generalizability, when 
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applying the model to structures or materials different from those used in this study, complex 
modifications to accommodate larger or more intricate designs are necessitated. 

 

  

(a) Mass optimisation (b) Stress optimisation 

  

(c) Strain energy of gravity load optimisation (d) Strain energy of mesh load optimisation 

Figure 7 Optimisation results 

 
 

 

(a) Displacement front (b) Displacement perspective (c) Displacement top 

Figure 8 Displacement of original morphology 

  

 

(1) 60-step front view (2) 60-step perspective view (3) 60-step top view 

Figure 9 Displacement after 60-step evolution 
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5. Conclusion 

This study represents a significant advancement in the field of architectural design by integrating 
machine learning and evolutionary algorithms to generate and optimise free-form morphology. This 
approach successfully addresses the dual challenges of adhering to building material limitations and 
enhancing structural stiffness, which are critical in the construction of viable and sustainable 
architectural structures. By extracting geometric information from free-form surfaces and translating 
these into sequential data, the use of advanced machine learning techniques is facilitated, specifically 
the Transformer model, to predict and optimise structural forms. This approach not only streamlines the 
initial stages of design but also ensures that the final forms are both feasible and structurally rational.  
despite some deviations from the actual values, the Transformer's predictive outputs are promising. The 
model has effectively demonstrated its applicability to geometric form prediction in the context of free-
form surface analysis, marking a significant step forward in the intersection of machine learning and 
architectural design. Still, there are limitations in the application of the methodology. The primary 
constraint is the reliance on the precision of 3D geometric models as learning inputs, which may not 
capture the full complexity of real construction projects. Further research is needed to expand the 
capabilities of the algorithms used, incorporating more dynamic and real-time data inputs involving 
variations in material properties, construction tolerances, and environmental impacts. The oscillatory 
convergence patterns of the multi-objective evolutionary optimisation suggest that the stability of the 
algorithms could be further improved to ensure smoother progression towards the optimum.  
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