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Abstract9

The V-Expander tensegrity modules stand out for their deployability and ease of assembly, offering a10

novel approach to constructing large-scale and complex structures like masts, towers, and robotic arms.11

While existing research on V-Expanders has concentrated mainly on structural design, actuation meth-12

ods, and prestress strategies, this paper focuses on their fundamental lightweight properties under three13

principal engineering mechanics loads: tension and compression. The study begins by outlining the de-14

sign of various V-Expander topologies and their clustering methods. In tensegrity structures, clustering15

refers to combining individual strings into a single, continuous string that navigates through pulleys or16

loops at node points. To facilitate a minimal mass design, we introduce a lightweight design optimization17

algorithm. This algorithm avoids member failure while optimizing the structure’s complexity to bear ex-18

ternal loads effectively. By studying the V-Expanders, the paper illustrates the design concept and the19

versatility of this approach across varying levels of complexity. Our findings highlight the V-Expanders20

as highly efficient in mass across diverse structural forms and loading scenarios. Furthermore, the op-21

timization method presented here is versatile and can be applied to other tensegrities, trusses, mem-22

brane structures, and various systems, including terrestrial, aerial, and underwater, to achieve optimized23

lightweight designs.24

Keywords: tensegrity, minimal mass design, nonlinear optimization, lightweight structures25

1. Introduction26

Tensegrity structures have demonstrated their effectiveness in creating lightweight [1, 2], deployable [3,27

4], and soft robotic systems [5, 6]. Similar to conventional structures in civil engineering, these can28

be modularly configured into various forms like columns, plates, and shells for constructing complex29

assemblies. The literature introduces various tensegrity modules, including tensegrity octahedrons [7],30

prismatic tensegrities [8], X-frames [9], T-Bar and D-Bar systems [10], and n-strut cylindrical booms31

[11]. This paper focuses on V-Expander tensegrities [12], which are noted for their lightness and ease of32

assembly, originally conceptualized by Raducanu and Motro in 2002 [13].33

Current research on V-Expanders has predominantly concentrated on aspects such as morphology [14],34

self-stress design [15], identification [16, 17], static deformation [18], deployability [19], and actua-35

tion speeds [20]. Our study focuses on the underexplored area of V-Expander tensegrity cells’ loading36

analysis. Given their significant loading potential, a deeper examination of their mechanical behavior37

is warranted. The application of V-Expander tensegrity structures in adaptive or deployable systems38
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offers exciting opportunities in structural engineering; analyzing their loading capacities is crucial for39

advancing our understanding of these structures.40

Research on clustered cable actuation within tensegrity structures is limited but evolving. Ali et al.41

developed a finite element analysis for static clustered tensile structures, accounting for friction from42

sliding [21]. Chen et al. examined how different clustering strategies affect the minimal mass required43

for tensegrity structures [22]. Ge et al. introduced a machine learning method to quantify uncertainty and44

manage probability in the deformation of flexible clustered tensegrity structures [23]. Ma et al. [24] for-45

mulated statics equations for these structures, considering pulley sizes. Despite these advances, research46

into selecting proper cables for optimal mass remains scarce. This study enhances the capability to cre-47

ate lightweight, clustered V-Exaonder tensegrity structures by introducing flexible clustering strategies.48

It offers a comprehensive method for designing structures with minimal mass while considering static49

equilibrium, stiffness, and potential failure modes.50

This paper is structured as follows: Section 2. explores the V-Expander typologies and clustering strate-51

gies. Section 3. examines the statics of the entire structure. Section 4. outlines the mass formulation52

and gravity forces for the clustered tensegrity system and introduces a minimal mass design approach53

via nonlinear optimization. Section 5. showcases two numerical examples to verify the accuracy and54

efficacy of the minimal mass design theory for clustered tensegrity systems. Finally, Section 6. provides55

a summary of the conclusions.56

2. The V-Expander tensegrity57

V-Expander tensegrity cells offer multiple advantages, including geometric symmetry, ease of assembly,58

deployability, and adjustability. Our research focuses on their mass-to-strength ratio, specifically aiming59

to optimize loading capacities with minimal mass. Building upon the work of [12, 13, 15], we establish60

the topology of a single V-Expander cell in both two and three dimensions and introduce parameters to61

measure the complexity of its configuration.62

2.1. The V-Expander unit63

Definition 2..1 (The Three-Dimensional V-Expander Cell). A three-dimensional V-Expander cell is a64

V-shaped tensegrity structure with 2p struts, where p is the cell complexity, divided into two groups of p65

equally length compressed struts. Its integrity is upheld by a network of cables consisting of one vertical,66

p bottom horizontal, p top horizontal, and 2p diagonal cables, as shown in Figure 1.67

From the above definition, we know the geometry of the cell is defined by three parameters: h, which68

denotes the height of the pyramid formed by a group of p struts; r, the radius of the circle enclos-69

ing the cell nodes in the horizontal plane; and d, the length of the vertical cable. The nodal coor-70

dinates of the V-Expander cell of the upper nodes are specified as follows: n1 =
[
0 0 h− d

]T
71

and n2 =
[
0 0 h

]T , etc. For the lower nodes, labeled j (j = 1, · · · , p), the coordinates are72

nj+2 =
[
r cos (2jπ/p) r sin (2jπ/p) 0

]T . For the upper nodes, labeled k (k = 1, · · · , p), the co-73

ordinates are nk+p+2 =
[
r cos (2kπ/p) r sin (2kπ/p) 2h− d

]T . The different values of the cell74

complexity parameter p result in various configurations of the V-Expander tensegrity cell.75

2.2. Clustered V-Expander unit76

In this study, we examine four distinct types of clustered actuation mechanisms for cases involving the77

lightweight design.78
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Figure 1: The V-Expander tensegrity cell: connectivity of the elements. The thick black lines are bars.
The thin magenta, red, green, and blue lines are CV, CTH, CD, and CBH cables. Light grey spheres are
ball joints.

Definition 2..2 (The Clustered V-Expander Cell). Through an analysis of the geometry and connectivity79

of the V-Expander tensegrity cell, we classify its components into specific groups: vertical cables (la-80

beled as CV), bottom horizontal cables (CBH), top horizontal cables (CTH), and diagonal cables (CD),81

as shown in Figure 1.82

3. Clustered Tensegrity Statics83

This analysis assesses how clustering members influence structural characteristics such as stiffness and84

load-bearing capacities. It is crucial to equip engineers with the ability to modify clustering strategies85

according to specific requirements. To facilitate this, we introduce the clustering matrix and elaborate86

on its properties, static behavior, mass formulation, and other pertinent aspects.87

3.1. Clustering matrix and elements88

Definition 3..1 (Clustering Matrix). The clustering matrix S ∈ Rnec×ne (ne represents the number of89

elements before clustering, and nec indicates the total number of elements after clustering.) is introduced90

to record the connectivity of clustered cables:91

[S]ij =

{
1, if the ith clustered element is composed of the jth non-clustered element.

0, otherwise.
. (1)

The force density of a structural member is the ratio of its axial force to its actual length. For both92

clustered and non-clustered tensegrity structures, the force density vectors are defined as:93

xc = l̂−1
c tc, x = l̂−1t, t = ST tc, (2)

where element length vectors lc ∈ Rnec and l ∈ Rne , tc and t represent the internal forces in the94

structural members, and v−1 is a vector with each entry being the reciprocal of the corresponding entry95

in v.96
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3.2. Clustering tensegrity statics equations97

Theorem 3..1 (Tensegrity Statics). The static equilibrium of clustered tensegrity in terms of the force98

density vector xc can be written as:99

ET
a A1cxc = ET

a fex, (3)

where the stiffness matrices A1c ∈ R3nn×nec =
(
CT ⊗ I3

)
b.d.(H)l̂−1ST l̂c, and C is the connectivity100

matrix for structural elements. The matrix H = NC ∈ R3×ne , with N as the nodal matrix, represents101

the structure element matrix. The function b.d.(•) denotes the block diagonal operator, and fex is the102

vector of total external load forces. Ea is an index matrix to take free nodes na from total nodes n,103

satisfies na = ET
a n.104

Proof. The static equations of clustered tensegrity structures can be described using three equivalent105

representations: nodal vectors, force density, and force vectors. Detailed proof of this equivalence is106

provided in [22].107

4. Minimal Mass of the Clustered V-Expander108

Definition 4..1 (The Minimal Mass). The minimum mass of a specific tensegrity structure is reached109

when all its components fail (either buckle or yield) at the same time.110

Theorem 4..1 (Minimal Mass Function). The minimal mass of a tensegrity structure, considering both111

buckling and yielding as modes of bar failure, can be expressed as follows:112

M =Γx+Λx
1

2 , (4)

where Γ and Λ are constant coefficient matrices:113

Γ =

 ρs

σs

(
vec(⌊STS⌋)

)T∧|Csei| ρb

σb

(
vec(⌊BTB⌋(I −Q))

)T∧|Cbei|

 , (5)

Λ =

0 2
ρb

(
vec(⌊BTB⌋ 5

4 Q)
)T

√
πEb

∧

|Cbei|

 (6)

and Q ∈ Rnb×nb is a diagonal matrix that identifies the mode of failure for bars, with diagonal elements114

as follows:115

Qjj =


0 λj ≥

4σ2
b ||bj ||
πEb

, Yield

1 λj <
4σ2

b ||bj ||
πEb

, Buckle
. (7)

Proof. The derivation is straightforward. The first and second parts of Eq. (4) represent the mass of116

strings and bars subject to yielding, and the mass of bars prone to buckling, respectively. A detailed117

discussion can be found in [22].118
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4.1. Minimal Mass of V-Expander119

Theorem 4..2 (Minimal Mass CTS). Considering the topology (N , C, S), external forces fex, and120

predefined prestress in the strings ϵc, the minimal mass V-Expander under different loading conditions121

can be determined by solving the subsequent nonlinear programming problem:122 minimize
xc

M

subject to ET
a A1cxc = ET

a fex, xc ≥ ϵc (ϵc ≥ 0)
. (8)

where ϵc ≥ 0 ensures that all strings remain under tension and all bars stay in compression.123

Algorithm 1: Minimal mass of the V-Expanders.
1) Given structure topology (N , C, S) subject to various complexity p, free nodal index matrix
Ea, external force fex, force density computational tolerance µ.
2) Assumes all bar buckles, Q = Inb×nb , and µ = 1e-6.
while min{eig(KTc)} < eig(K̄Tc) do

while Qi+1 ̸= Qi or max| xc,i+1 − xc,i |≥ µ dominimize
xc

M

subject to ET
a A1cxc = ET

a fex, xc ≥ ϵ0.

Compute force densities x from xc:

x = l̂−1ST l̂cxc.

Take λ out of x, check Eq.(7), update Q.

i← i+ 1.

end while
end while

5. Numerical examples124

In this section, we examine two numerical examples to validate the proposed method: a tensegrity V-125

expander with varying complexities and clustering strategies, subjected to compressive and tensile loads.126

The two numerical examples analyzed do not have self-stress in their initial configurations. Aluminum127

bars and UHMWPE strings are used as the material in all cases.128

5.1. Compressive loads129

The relationship between mass and complexity (p = 1, 2, · · · , 20) in the V-Expander tensegrity cell,130

considering different clustering strategies under compressive loads, is depicted in Figure 2. The graph131

shows that mass increases monotonically as complexity rises for the three clustering strategies.132

5.2. Tensile loads133

The relationship between mass and complexity (p) for the V-Expander tensegrity cell under tensile loads,134

with varying clustering strategies, is illustrated in Figure 3. The graph indicates a monotonic decrease135
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Figure 2: The mass versus complexity (p) relationship for the V-Expander tensegrity cell with various
clustering strategies subject to compressive loads.

in mass with increasing complexity for the NC case. The other two cases show fluctuations in mass136

at different complexities. Specifically, the CD case exhibits less variation in mass compared to the BT137

case.138

Figure 3: The mass versus complexity (p) relationship for the V-Expander tensegrity cell with various
clustering strategies subject to tensile loads.

6. Conclusions139

The V-Expander tensegrity modules are notable for their deployability and ease of assembly, provid-140

ing innovative solutions for constructing large-scale and complex structures such as masts, towers, and141

robotic arms. While existing studies on V-Expanders have focused on structural design, actuation, and142

prestress strategies, this paper explores their inherent lightweight properties under three key engineering143

mechanics: load, tension, and compression. We start by detailing the design of various V-Expander144

topologies and their clustering methods, where clustering involves integrating individual strings into145

a continuous configuration through pulleys or loops at nodes. To promote minimal mass design, a146

lightweight design optimization algorithm is introduced to prevent member failure and enhance the147

structure’s capacity to withstand external loads. This study not only demonstrates the design flexibil-148

ity of V-Expanders across different complexities but also presents an optimization method applicable149

to other structural systems, including tensegrities, trusses, and membrane structures in various environ-150

ments, ensuring optimized lightweight solutions.151
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