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Abstract 

In this study, we propose an optimal design method for TMDs (Tuned Mass Damper, which is a vibration 

damping system composed of weights, springs, and dampers) that simultaneously determine the optimal 

number, arrangement, and performance of TMDs that minimize the seismic response of spatial structure 

buildings and examine the versatility of this method. The analysis model is a lattice dome, a cylindrical 

lattice shell, and an HP lattice shell. The members of each model are circular steel pipes. The optimal 

design algorithm of TMD is as follows. (1) Start the optimal design method from a model without TMD. 

(2) The modes are determined by eigenvalue analysis, and one TMD is installed at the maximum 

antinode of each mode, and this is used as a candidate solution for TMD installation. (3) Among the 

candidate solutions for TMD installation, the candidate solution with the highest effect on reducing 

seismic response is the TMD installation solution. The results are shown below. Compared with the 

randomly distributed arrangement of the same amount of TMDs, the maximum vertical displacement 

response is smaller in the optimal arrangement, confirming the validity of this method. When placing 

TMDs together considering the symmetry of the model, a higher response reduction effect is obtained 

than when placing TMDs one by one, but depending on the model shape, the sufficient effect could not 

be confirmed, so it is necessary to select the TMD placement method according to the model shape. 

Since the response values and TMD arrangement are different from the roof only model, it is necessary 

to analyze with the model designed including the substructure in the actual design. In order to shorten 

the analysis time, the candidate solution is determined by the response spectrum method, and the results 

are compared with the aforementioned method. 

Keywords: spatial structure, seismic response, optimal design method, TMD, vibration control  

1. Introduction 

Spatial structure buildings are widely used in domes, school gymnasiums, etc., and are used as 

evacuation centers in times of disaster, but there are some reports of damage that ceiling materials and 

suspension equipment fall from the roof during an earthquake. As one of the mechanisms for reducing 

the response of the roof, there are some studies of vibration control using the Tuned Mass Damper 

(TMD), which is a vibration damping system composed of weights, springs and dampers. Since the 

TMD can be installed at a single fulcrum, it has a high degree of freedom of installation and is a vibration 

damping device suitable for spatial structure buildings. Various studies [1][2] have been conducted on 

the application of TMD to spatial-structured buildings. In previous studies, the number of TMDs was 

specified and the placement of the TMDs was determined based on a certain vibration mode. However, 

because the dominant mode becomes complicated depending on the shape of the spatial structure, it is 
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difficult to obtain the optimal number, arrangement, and performance of the TMDs to be installed at the 

same time. 

Therefore, in this study, we propose an optimal design method for TMDs that simultaneously determine 

the optimal number, arrangement, and performance of TMDs that minimize the seismic response of 

spatial structure buildings and examine the versatility of spatial structure buildings of various shapes.  

2. Analysis model and analysis conditions 

Figure 1-3 shows the shape of the analysis models, and Table 1-3 shows the specifications of each model. 

The analysis model is a lattice dome [3], a cylindrical lattice shell [1], and an HP lattice shell [4], which 

are the basic shapes of the spatial structure. Each model member shall be a circular steel pipe, the 

members shall be rigidly jointed, and the fulcrum shall be a fixed fulcrum. The fixed load is 1.18 kN/m² 

for the roof structure, and a mass equivalent to the fixed load is given as a concentrated mass at each 

node. The response analysis is a time history response analysis, the time increment is 0.02 seconds, and 

the seismic wave is input from the X direction of the Taft 1952EW wave. The analysis is performed by 

MATLAB programming. 

 

  

Table 1: Lattice Dome Specifications 

Table 2: Cylindrical Lattice Shell Specifications 

Table 3: HP Lattice Shell Specifications 

Figure 1: Lattice Dome 

Figure 2: Cylindrical Lattice Shell 
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3. TMD Optimal Design Methodology 

In previous studies, the number of TMDs was determined in advance and the response reduction effect 

was examined. In this study, in order to investigate the effect of reducing seismic response due to 

changes in the amount of TMDs installed, we propose a method to track seismic response reduction 

while continuously installing TMDs with optimal placement and performance. In addition, since the 

vertical response is likely to occur in the spatial structure due to the structural characteristics, this study 

deals with the vertical response. 

3.1. TMD Optimal Design Algorithm 

The optimal design algorithm of TMD is as follows. 

Step 1: Start candidate solution search without TMD. 

Step 2: Determine the eigenmodes in eigenvalue analysis, the maximum antinode of each mode is the 

candidate solution for TMD installation. 

Step 3: Determine the optimal performance (stiffness and damping) of TMD. The performance of the 

installed TMD is determined by the optimal condition formulas [5]. 

Optimal condition formulas [5] 

1

1 +
: Optimal synchronization ratio (stiffness) 

3

8(1 )



+
: Optimal damping ratio (damping) 

 : Mass ratio of entire structure and one TMD 

Step 4: One TMD is installed in the candidate solution and evaluate the response with time history 

response analysis. Repeat Step 3 and Step 4 for the number of the candidate solutions. 

Step 5: Among the candidate solutions, the node with the smallest maximum vertical response is the 

installation solution. 

Step 6: Install one TMD in the installation solution. 

Repeat Step 1 to 6 for the number of steps of analysis. 

 

3.2. Determination of TMD addition mass 

A feature of this method is that it is possible to obtain the optimal arrangement for each different total 

TMD level. In this section, we examine the effect of the difference in TMD increment (added mass) per 

step of optimization on optimization.  

Figure 4 shows the result when the TMD addition mass of 1 step is changed for a certain model and the 

response displacement is controlled. From Figure 4, even if the addition mass of TMD at 1 step is 

changed, the maximum response displacement transition is almost the same. Therefore, the mass at 1 

step is set to 1×103kg. 

 
Figure 4: Maximum displacement response to the total mass of added TMD 
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3.3. Confirmation of the optimality of the TMD optimal design method 

The validity of the optimal arrangement obtained by applying this method will be examined. Figure 5 

shows a comparison of the maximum vertical response transition when the method is applied to a model 

and when the same amount of the same total amount of TMD is randomly distributed. From Figure 5, 

the response of the optimal arrangement was smaller than that of the random arrangement at any total 

volume level, and the validity of this method was confirmed. 

  
Figure 5: Comparison of optimal arrangement and random arrangement 
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(1) one by one                               (2)group arrangement 

(a) Lattice Dome 

 

                  
(1) one by one                             (2)group arrangement 

(b) Cylindrical Lattice Shell 

 

                  
(1) one by one                                (2)group arrangement 

(c) HP Lattice Shell 

Figure 6: The placement of TMD of each model 
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(c) HP Lattice Shell 

Figure 7: Changes in maximum vertical response acceleration of each model 

     

4.2. For models with substructures 

Actual spatial structure buildings have a rigid substructure. In this section, we examine the effect of the 

substructure on the response reduction effect of the dome model having two types of substructures 

shown in Figure 8. The height of the substructure is 7m, φ91.44mm×16mm round steel pipe, and the 

fixed load is 0.98 kN/m². The TMD arrangement method is the symmetrical arrangement. 

Figure 9 shows the transition of the maximum vertical response acceleration in the model with the 

substructure, and Figure 10 shows the mass diagram of the TMD arrangement of 20 steps. From Figure  

10, the response reduction effect by TMD is not seen in the column model having a small rigidity of the 

substructure because the response in the vertical direction is extremely small, but the response reduction 

effect by TMD is seen in the wall model. Since the response values and TMD arrangement are different 

from the roof only model, it is necessary to perform analysis with the model designed including the 

substructure in the actual design. 

       
(a) Column model                                        (b) Wall model 

Figure 8: Lattice dome with substructures 

 

  
(a) Column model                                                      (b) Wall model 

Figure 9: Maximum vertical response acceleration of the model with substructures 
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(a) Column model                                        (b) Wall model 

Figure 10: The placement of TMD of model with substructures 

 

5. Improvement of algorithm to reduce analysis load 

In this method, dynamic time response analysis is performed for all candidate solutions, but as the size 

of the model increases, the analysis time increases and the computational load associated with the 

increase in the number of candidate solutions becomes an issue. Therefore, in order to shorten the 

analysis time, we will improve the algorithm using the response spectrum method for evaluating the 

response of all candidate solutions (Figure 11). As a result, the analysis time is shortened, and the 

accurate response value is stored by performing dynamic time response analysis with the determined 

TMD installation solution. We will compare the following two methods to see if it is possible to shorten 

the analysis time. 

Method 1: Candidate resolution is determined by time history response analysis. 

Method 2: Candidate resolution is performed by the response spectrum method. 

The TMD arrangement method is the symmetrical arrangement. Figure 12 shows the transition of the 

maximum vertical response for each dome-shaped method, and Figure 13 shows a 20-step TMD 

arrangement diagram for each method. (a) is the acceleration when the acceleration is reduced, and (b) 

is the displacement when the displacement is reduced. Figure 12 shows that the solution for reducing 

acceleration and displacement in Method 2 using the response spectrum has not been tracked. Figure 14 

shows the maximum response of each node in each response evaluation method at 20 steps in Method 

2. Figure 15 shows the node number of the lattice dome. The nodes after number 92 are omitted because 

they are fixed ends. From Figure 14, it is considered that the difference in the TMD arrangement of each 

step is due to the difference in response evaluation in the response spectrum method and dynamic time 

analysis. Improving the accuracy of acceleration and displacement evaluation by response spectrum in 

Method 2 will be a future issue. 
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Maximum vertical response displacement of the i-th node 

( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

(max) ( 2 )
N N

s r s r s r s r s r s r s r

i A A SS i i SC i i CC i i

s r

S S         = + +  

Maximum vertical response acceleration of the i-th node 

( , ) ( , ) ( , ), ,s r s r s r

SS SC CC   : Correlation coefficient of s-th mode and r-th mode 

( ) ( ),s r

i i  : Participation vector 

( )s

DS : Displacement response spectrum 

( )s

AS : Acceleration response spectrum 



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 8 

 

 
Figure 11: Improved TMD optimization algorithm 

 

            
(a) Acceleration reduction                                    (b) Displacement reduction 

Figure 12: Maximum vertical response for each method 
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(a) Acceleration reduction 

 

                   
(1) Method 1                                     (2) Method 2 

(b) Displacement reduction 

Figure 13: The placement of TMD for each method 
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(a) Maximum acceleration of each node when acceleration is reduced 

 

 
(b) Maximum displacement of each node when displacement is reduced 

Figure 14: Maximum response for each node at 20 steps 

 

 
Figure 15: Node number of Lattice Dome 

 

6. Conclusion 

In this study, we proposed an optimal design method for TMD, and the main results obtained are as 

follows. 

(1) We were able to confirm the response reduction effect and optimal placement and performance for 

multiple spatial structure shapes. 

(2) The response reduction effect was also confirmed for the spatial structure model with a substructure, 

demonstrating the versatility of this study. 

(3) Although the analysis time could be shortened using the response spectrum method, there are cases 

where the response cannot be reduced due to the deviation of the response value from the time history 

response analysis. 
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