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Abstract 

In recent years, periodic structural optimization has become an effective approach to generating efficient 

structures that meet a variety of practical considerations, including manufacturability, transportability, 

replaceability, and ease of assembly. Traditional periodic structural optimization typically restricts 

designs to a uniform assembly configuration utilizing only one type of unit cell. This study introduces a 

novel clustering-based approach for periodic structural optimization, which allows variable orientations 

of individual unit cells. A dynamic k-means clustering technique is introduced to categorize all unit cells 

into distinct groups. Meanwhile, a heuristic approach is implemented to identify and select the most 

beneficial orientation configurations of the unit cells during the optimization process. Several numerical 

examples are presented to demonstrate the effectiveness of the proposed method. The results indicate 

that clustering-based oriented periodic structures can significantly outperform their traditional periodic 

counterparts. This study not only incorporates assembly flexibility into periodic topology optimization 

but also utilizes various types of unit cells, thereby further enhancing the structural performance of the 

periodic design. 

Keywords: Topology optimization; Periodic structure; Bi-directional evolutionary structural optimization (BESO); Dynamic 

clustering; Oriented unit cells 

1. Introduction 

In recent decades, topology optimization techniques have made significant contributions to a wide range 

of engineering applications, e.g., advanced manufacturing [1, 2], architectural design [3-5], and civil 

engineering [6]. Despite their growing popularity, the optimized designs from conventional optimization 

techniques often feature complex geometries that pose significant manufacturing challenges. For 

practical applications, the optimized design requires specific adaptations, such as structural periodicity 

[1, 2]. This approach introduces a periodic design framework, where an individual unit cell is optimized 

and then replicated, creating a larger periodic structure. Specifically, periodic topology optimization can 

be categorized into two distinct research branches based on the size of the unit cells. For the design of 

microstructural materials, the unit cell, or the microstructure, is infinitely small compared to the 

macrostructure [7, 8]. On the other hand, this study focuses on unit cells of finite size and is primarily 

used for the design of large macrostructures [9, 10]. 

Huang and Xie initially proposed a general design framework for finite periodic optimization [9], with 

a primary focus on minimizing structural mean compliance. Subsequently, this approach has been 

extended to address other problems, including thermal conductivity [11] and natural frequency [12]. 

Besides the above applications, finite periodic optimization possesses significant potential in civil and 

architectural engineering, especially for prefabricated construction projects. Its ability to produce 

repetitive, standardized components fits perfectly with the modular nature of prefabricated structures. 
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However, most existing studies on periodic optimization have not considered the assembly flexibility of 

prefabricated structures. They typically adhere to one orientation configuration, yet allowing variable 

orientations for the unit cells can generate more efficient periodic designs [13]. 

Moreover, introducing more unit cell types during the optimization process is also a viable technique to 

improve structural performance further. Particularly in prefabricated construction projects, which 

usually involve assembling multiple component types, the simultaneous consideration of variable 

orientations for unit cells and the introduction of additional unit cell types during the form-finding 

process can lead to significant performance improvements. The combined benefits can be demonstrated 

in the following case study (Figure 1). While Figure 1b shows an optimized design maintaining a 

uniform orientation, Figure 1c presents a design that achieves greater efficiency by incorporating 

orientation flexibility. This case underscores the crucial role of selecting better orientations in periodic 

optimization to achieve more efficient design solutions. Moreover, as Figure 1d presents, adding a 

second type of unit cell can significantly improve the structural efficiency, thereby showcasing the 

potential of introducing more types of unit cells in the optimization process. 

 

Figure 1: Different design approaches for bridges use the same material volume. (a) The loading and boundary 

conditions. (b) The optimized design with a uniform orientation (C = C0). (c) The optimized design with oriented 

unit cells (C = 0.84C0). (d) The oriented optimized design with two types of unit cells (C = 0.73C0). 

Motivated by the great potential to increase structural efficiency via orientation variability and unit cell 

diversity, this paper presents a clustering-based approach tailored for finite periodic structural 

optimization. Through numerical examples, we demonstrate that our method can obtain better outcomes. 

The rest of the paper is organized as follows. The topology optimization formulation for periodic design 

is first described in Section 2. The dynamic clustering and orientation strategies are then discussed in 

Section 3. Section 4 presents several numerical examples to demonstrate the effectiveness of the new 

approach. The main conclusions from this study are summarized in Section 5. 

2. Optimization formulation and sensitivity analysis 

This study presents the mean compliance minimization problem as an example to illustrate the proposed 

method. As shown in Figure 2, the design domain is tessellated with m = m1 × m2 oriented unit cells 

where m1 and m2 denote the numbers of unit cells along the x and y directions, respectively. The 

optimization problem for the periodic structure can be described as 

 
T T

, , , , ,

1

1 1
Minimize: ( )

2 2

N m
p

i j i j i j i j i j

i

C x x


=

= = U KU u k u  (1) 

 
1 2

*

, ,

1

1 2 1 2 , ,

, min

0

,  such that , ,

Subject

 

1 

:

o

 to

r 

m N

i j i j

i j

k i j i j

i j

V x v

i i i i S x x

x x

=

 
− = 

 

  =

=

 

 (2) 



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 3 

 

where C is the mean structural compliance. The binary design variable xi,j declares the solid (1) or void 

(xmin = 0.001) status of the j-th element in the i-th unit cell. N is the total number of elements within a 

unit cell. U and K are the global displacement vector and stiffness matrix, respectively. p is the penalty 

exponent [14], which is set as 3 in this paper. ui,j is the elemental displacement vector and ki,j is the 

stiffness matrix of the j-th element in the i-th unit cell. V* = V  vf is the target volume of the final 

structure. V is the total volume of the design domain, and vf is the target volume fraction of material. vi,j 

is the volume of the j-th element in the i-th unit cell. The status of the j-th element remains the same 

across all unit cells that are classified as the same cluster Sk, where the set Sk includes the indices of all 

unit cells belonging to the k-th cluster. 

 

Figure 2: A 2D design domain with m = 6 unit cells where m = m1  m2. m1 and m2 denote the number of unit 

cells along the x and y direction, respectively. Here xi,j is the design variables where i and j denote the unit cell 

number and element number within the unit cell, respectively. 

In the BESO method, the design variables are updated iteratively according to the relative ranking of the 

sensitivities. By using the adjoint method [15], the gradient of the objective function C with regard to 

the design variable xi,j can be calculated as 
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The sensitivity of element j within unit cell i is defined as 
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To avoid checkerboard pattern and mesh-dependency issues, the following filtering scheme is adopted 

to process the raw sensitivity for each individual element [16]. 
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 ( )( , ) f ( , )max 0,i j k i j kw r d= −  (6) 

where N is the total number of elements in the circular sub-domain of the filter scheme. w(i,j)k is the linear 

weight factor, rf the filter radius, and d(i,j)k is the distance between the centers of elements (i, j) and k. To 

stabilize the optimization process and ensure the convergence of solutions, the smoothed sensitivity of 

the current iteration is adjusted by averaging its historical values as follows [17] 
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In this study, the historical values of sensitivity numbers play a crucial role in determining the 

orientations of unit cells and clustering them into distinct groups. The clustering and orientation 

strategies will be discussed in the following sections. 

3. Methodology 

3.1. Dynamic clustering technique 

The proposed approach uses a dynamic k-means clustering technique to classify all unit cells into 

different clusters based on their structural efficiency. Moreover, the inefficient unit cells can be gradually 

removed during the optimization process. A minimum volume fraction vf min is set to remove unit cells 

with volume fractions below this threshold. These unit cells are then manually classified as void unit 

cells S0 in the subsequent clustering process. The details of the dynamic clustering technique are 

presented in Algorithm 1 as follows: 

Step 1: For every g-th iteration, update the number of clusters 
CN  using Eq. (8). 
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where k  represents the target number of clusters, vc is the current volume fraction, and vf is the 

final volume fraction.   is used to control the rate of change in the number of clusters. Once the 

objective volume fraction is reached, the number of clusters will be maintained at the target value 

k . 

Step 2: Perform finite element analysis and calculate the elemental sensitivity according to Eq. (7). 

Step 3: Calculate the number of void unit cells 0S   in the current iteration based on the minimum 

volume fraction threshold f minv . 

Step 4: Calculate the sample point is  for each unit cell. The clustering sample point for each unit cell 

is  comprises two key metrics: the mean ix  and the variance iy  of the sensitivities across all its 

elements. 

Step 5: Rank all unit cells and update the void cluster 0S  based on the mean sensitivity ix  of each unit 

cell. 

Step 6: The k-means method is employed to cluster the sample set  0i i S=  S s , excluding void unit 

cells. 

3.2. Determining the orientations of unit cells 

In finite periodic optimization, a straightforward way to compute the sensitivity of the j-th element 

within the representative unit cell (RUC) is to average the sensitivities of the corresponding j-th elements 

across all unit cells in the same cluster [9]. This can be executed as follows 
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where Sk,j is the sensitivity number of the j-th element in the k-th RUC. As shown in Figure 2, the RUC 

sensitivities Sk,j may vary according to the orientation of the constituent unit cells within each cluster. 
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Thus, identifying more efficient configurations could lead to significantly better local optima for the 

optimization problem.  

A practical approach to achieving a better orientation configuration is to determine the orientation of 

each unit cell by associating the relatively higher-ranked elements within these unit cells. As shown in 

Figure 3, we may divide each unit cell into four quadrants and then calculate the total sensitivities of all 

elements within each quadrant. Initially, the quadrant with the highest sensitivity value is identified and 

assigned the number 1 (Figure 3). Subsequently, the adjacent quadrant (excluding diagonals) with the 

next highest sensitivity value is marked with the number 2 (Figure 3). The remaining two quadrants are 

then labeled with the number 0. Consequently, each unit cell is assigned an orientation sequence code, 

represented as Oi, which in turn determines the orientation of the unit cell (Figure 3). All these 

orientation sequence codes together form the orientation configuration of the macrostructure, which is 

denoted as O = [O1,…,Oi, …,Om]. 

To determine the sensitivities of the RUC for each type, one can choose a reference unit cell with a 

specific sequence code as the benchmark. Subsequently, all other unit cells within the same type are re-

oriented to match the benchmark sequence code. Figure 4a provides several examples demonstrating the 

method for calculating the RUC sensitivities of each cluster according to Eq. (9). For instance, in Figure 

4a, sequence code 1200 is chosen for the reference unit cell. If unit cell one also has the sequence code 

1200, then its orientation aligns with that of the reference unit cell. On the other hand, if the sequence 

code for unit cell two is 0012, then its orientation is adjusted to mirror the reference unit cell. Similarly, 

unit cell three is required to be rotated anti-clockwise by 90 degrees. Once the RUC design is updated, 

the design variables of elements in each unit cell are reassigned based on its orientation sequence code 

and corresponding RUC design (Figure 4b). 

 

Figure 3: Illustration of possible orientations of 2D square unit cells with corresponding sequence codes. 

 

Figure 4: Illustration of how to calculate the RUC sensitivities and update the periodic design. 
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3.3. The element update scheme 

In the conventional periodic optimization, both the sensitivities and design variables are updated within 

the RUC domain [9]. This study does not retain historical sensitivities within the RUC due to the 

implementation of a dynamic clustering technique. This technique allows for the number of clusters and 

their respective unit cells to vary during optimization. Therefore, the historical sensitivities are 

individually recorded for each unit cell. The update of the RUC sensitivities can be outlined in Algorithm 

2 as follows: 

Step 1. Calculate the raw RUC sensitivities of each cluster ,k

n

S j  according to Eq. (9). 

Step 2. Obtain the smoothed RUC sensitivities ,k

n

S j   of each cluster according to the filter 

scheme in Eqs. (5) and (6). 

Step 3. The smoothed RUC sensitivities of the current iteration ,k

n

S j  ( 2n  ) are averaged with 

the historical sensitivities of each individual unit cell 
( 1)

,

n

i j −
. This can be achieved by 

slightly modifying Eq. (7) as ( ) ( )( 1)
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n

S j  are oriented based on the 

orientation sequence code obtained from the orientation technique outlined in Section 3.2. 

Step 4. Update the RUC sensitivities according to the averaged RUC sensitivities. This step can 

be realized by making a minor adjustment to Eq. (9) as , , /
k

k

n

S j i j k

i S
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Step 5. Obtain the smoothed sensitivity ,kS j  for the updated RUC sensitivities ,kS j   by 

applying the filter scheme according to Eqs. (5) and (6). 

After obtaining the final RUC sensitivities ,kS j , the target volume V 

(n) of material for the next iteration 

needs to be determined to update the design variables: 

 ( ) ( ) ( 1)max , 1n nV V V  −= −  (10) 

where   is the evolutionary ratio. During the optimization process, the material volume gradually 

decreases to the target value V 

*. In each iteration, the element update involves setting a sensitivity 

threshold to achieve the target volume. The solid elements with sensitivities lower than the threshold are 

removed from the RUC domain. In contrast, the removed elements with sensitivities higher than the 

threshold are readmitted to the RUC domain. The sensitivity threshold is determined by a bisection 

method, as outlined in Table 1. 

Table 1: Pseudocode of the bisection method 
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3.4. Numerical implementation 

The numerical implementation procedure of the clustering-based approach is described as follows. 

Step 1. Discretize the design domain with a finite element mesh and assign initial design variables 

(1 or xmin) to elements to construct the initial design. 

Step 2. Perform FEA on the current design to obtain the raw elemental sensitivities ,

n

i j  and the 

mean compliance nC . 

Step 3. For every g-th iteration, classify unit cells into different types Sk using Algorithm 1. 

Step 4. Determine the current orientation configuration 
n

O  using the technique from Section 3.2. 

Step 5. Compare the new configuration 
n

O   with the previous configuration 
( 1)n−

O  . If 

 ( 1) ( 1)1,2, , ,  n n n n

i ii m O O− −=   =O O  , set the target volume V 

(n) using Eq. (10). 

Otherwise, maintain the previous volume as V 

(n-1). 

Step 6. Update RUC sensitivities based on the new orientation 
n

O  using Algorithm 2. 

Step 7. Update elements to construct a new design for the next FEA using the bisection method 

in Table 1. If 
( 1)n n−=O O , move to 0. Otherwise, proceed to Step 8. 

Step 8. Perform FEA on the new design and obtain the mean compliance value ˆ
nC . If ˆ

n nC C , 

go to 0. If ˆ
n nC C , replace the current configuration with the previous configuration as 

( 1)n n−O O  and return to Step 5. 

Repeat Step 2 to Step 8 until the following convergence criterion is satisfied. The convergence criterion 

is applied once the final target volume V* is achieved. Here, n denotes the current iteration number,   

represents the tolerance set at 0.001 for this study, and Z, an integer, is fixed at 5, indicating that the 

change in mean compliance over the last ten iterations is sufficiently small. 
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In the proposed approach, the mean compliance value is used to evaluate the competitiveness of the 

newly obtained configuration. When consecutive configurations differ during optimization, the material 

volume remains constant to facilitate an accurate comparison of orientation efficiencies. The 

configuration yielding a lower mean compliance value is then selected for the subsequent optimization 

iteration. This approach allows stable changes in the objective function and leads to a stable convergence. 

4. Numerical examples 

4.1. Two-dimensional beam 

The first example considered here is a two-dimensional beam (Figure 5). Due to symmetry, only half of 

the model is used for optimization. The half-design domain is divided by 8 × 4 unit cells, with each 

meshed into 100 × 100 plane stress elements. Figure 5a shows the loading and boundary conditions of 

the optimization problem. The concentrated force F = 1 is applied at the bottom middle of the beam. In 

this example, the target volume fraction and the filter radius for all cases are set to 50% and 5, 

respectively. The evolutionary ratio   is 1%. 

Conventional periodic optimization is first demonstrated. Figure 5b shows the optimized design using 

one type of unit cell with a uniform orientation. This approach results in uniform volume fractions across 

all unit cells, which could lead to inefficient material distribution in areas of the structure with lower 

strain energy density. Figure 5c, Figure 5d, and Figure 5e present the optimized designs with different 
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numbers of clusters. In all cases, vf min is set to be 0. The mean compliances of Figure 5c, Figure 5d, and 

Figure 5e are 21%, 25%, and 38% lower than that of Figure 5b. The results of the three cases show that 

the proposed approach can not only identify more efficient unit cell orientations but achieve more 

efficient material distribution by incorporating more types of unit cells. 

 

Figure 5: Example of the two-dimensional beam. (a) Loading and boundary conditions. (b) Optimized design 

with one unit cell type and uniform orientation (C = 60.8). Optimized designs featuring (c) one, (d) two, and (e) 

three types of unit cells, with mean compliance values C of 46.6, 45.8, and 37.6, respectively. 

4.1. Three-dimensional cantilever beam 

The proposed orientation technique in Section 3.2 can be easily extended to three-dimensional periodic 

optimization. For three-dimensional problems, we consider that the macro design domain is divided into 

multiple cubic unit cells. Similar to the square unit cell, we can divide the cubic unit cell into eight 

octants and then calculate the total sensitivities of all elements within each octant to determine the 

orientation sequence code. We can initially identify the octant with the highest sensitivity value and 

label it as number 1. Next, from the three adjacent face neighboring octants, we select the one with the 

highest sensitivity and label it as number 2. Subsequently, among the remaining two face neighboring 

octants, we identify the one with the highest sensitivity and label it as number 3. Lastly, all other octants 

are labeled with the number 0. Consequently, each cubic unit cell is assigned an orientation sequence 

code with eight numbers. 

To illustrate the above orientation technique, we consider a three-dimensional cantilever beam with 

loading and boundary conditions detailed in Figure 6a. A concentrated force F = 1 is applied at the 

centroid of the free end. Due to symmetry, only a quarter of the model is optimized. This quarter model 

is divided into 60×8×4 unit cells, each further meshed into 5 × 5 × 5 hexahedral elements. The target 

volume fraction and the filter radius are set at vf = 20% and rf = 1.5, respectively. In this example, the 

dynamic cluster technique is applied every ten iterations, and vf min = 10%. The evolutionary ratio   is 

2%. Figure 6b, Figure 6c, and Figure 6d illustrate optimized designs with one, two, and three types of 

unit cells. It is evident that using more clusters in the optimization results in lower compliance values. 

In practice, the optimal number of clusters can be identified using the “Elbow Method.” This technique 



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 9 

 

determines the optimal number of clusters by identifying a knee point on the curve plotting the objective 

against the number of clusters. 

 

Figure 6: Example of the three-dimensional cantilever beam. (a) Loading and boundary conditions. Optimized 

designs featuring (b) one, (c) two, and (d) three types of unit cells, with mean compliance values C of 8.7, 7.8, 

and 6.6, respectively. 

4. Conclusions 

In this paper, we have developed a clustering-based approach for periodic structural optimization. It 

features an orientation technique to select more efficient orientations for unit cells during the 

optimization process. We propose a dynamic k-means clustering technique to eliminate less efficient 

unit cells and incorporate multiple unit cell types into the optimized design. The effectiveness of this 

approach is demonstrated through several numerical examples in the context of compliance 

minimization. The proposed orientation technique has proven to be effective in finding better orientation 

configurations with an acceptable increase in computational costs. This is particularly useful when 

finding the optimal unit cell orientations through brute force computation becomes impractical for 

structures with numerous unit cells. Moreover, the structural performance of the optimized design can 

be further improved as more types of unit cells are included. Therefore, in practical applications, 

designers can determine the number of clusters based on the trade-off between performance 

improvement and increased manufacturing costs. 
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