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Abstract 

This paper presents the application of a new form-finding method to realistic structural design case 
studies. The form-finding method, formulated as a constrained optimisation problem, is introduced 
briefly as well as the accompanying implementation as a plugin for Grasshopper®. Building on the 
authors’ previous work [1] [2], the form-finding approach distinguishes itself by allowing precise control 
over complex geometrical constraints, steering towards a unique solution via objective functions. A 
meticulous control of structural geometry is often challenging with other methods, but necessary in 
contemporary structural design practices where form-finding is involved. The core focus of this paper 
is the application of the developed numerical form-finding method to realistic structural design projects, 
where traditional form-finding methods may fall short. The advantages and limitations of the method 
are discussed through a detailed discussion of three case studies of which the applied geometric 
constraints are explained in detail. These examples illustrate the method’s effectiveness in managing 
complex design constraints as required in practice and bridge the gap between theory and practice, 
demonstrating the importance of a well-defined form-finding problem. 

Keywords: Numerical Method, Form-finding, Optimisation, Geometry, Early Design Phase.  

1. Introduction 
In engineering design practice, designers often encounter various architectural and structural constraints 
that affect both geometry and structural behaviour. Traditional methods, such as the classical force 
density method by Schek and Linkwitz [3] or dynamic relaxation as proposed by Barnes [4] offer little 
flexibility in incorporating geometric constraints, hindering the exploration of the structural design 
space. In practice, the authors often fall back to graphic statics [5] [6] [7] as a quick and transparent way 
to understand form-force relationships in structural design. Drawing graphic statics diagrams, however, 
lacks sufficient speed for rapid feedback to gain an understanding of the degrees of freedom in the design 
space and the implications of altering the geometry. Manually constructing form and force diagrams of 
more intricate 3-dimensional networks of forces becomes a tedious task and its application is limited to 
planar graph topologies. In case of non-planar topologies, the graph requires a topological planarisation 
by cutting crossing edges and artificially reconnecting the edges [8]. 

Previous research by the authors elaborated on the formulation of form-finding as a constrained 
optimisation problem where equilibrium is imposed, and geometry and force densities are treated as 
concurrent variables [1] [2]. This approach allows to find discrete networks in equilibrium subjected to 
a single load case. The main reason for the development of this formulation can be found in the authors’ 
desire and need to not only perform form-finding in practice whilst handling various geometrical 
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constraints, but also primarily to be able to work towards a specific and unique solution by means of 
objective functions. The objective function is crucial to find a single unique solution from the infinite 
amount of equilibrated solutions when the form-finding problem is under-constrained, which is often  
the case.  

This paper focusses on the application of the form-finding method on realistic case studies, 
demonstrating its ability to manage geometric constraints effectively. Through these examples, the 
method’s practical application, versatility, advantages and limitations are showcased. Besides, the case 
studies describe the projects’ geometric constraints in detail to show the actual need in contemporary 
structural design projects to handle geometric constraints in a controlled way during form-finding. 

2. Method 

2.1. Numerical approach 
The proposed method can be seen as a variation of the force density method [3], with the following key 
distinction from the original method: i) both nodal coordinates and force densities are used as variables, 
ii) the equilibrium equations, along with other geometric and force-related constraints, are considered 
as equality constraints in the optimization problem, iii) various objective functions are incorporated. 
With nodal coordinates, force densities, and reactions denoted respectively by 𝒑𝒑, 𝒒𝒒, and 𝒓𝒓, this problem 
formulation can be expressed as follows. 

 

min
𝒑𝒑,𝒒𝒒,𝒓𝒓

𝑓𝑓(𝒑𝒑,𝒒𝒒, 𝒓𝒓)

𝑠𝑠. 𝑡𝑡.

𝒈𝒈𝑒𝑒𝑒𝑒(𝒑𝒑,𝒒𝒒, 𝒓𝒓) = 0
𝒈𝒈1(𝒑𝒑,𝒒𝒒) = 0

⋮
𝒈𝒈𝑛𝑛(𝒑𝒑,𝒒𝒒) = 0

 (1) 

Here, 𝑓𝑓(𝒑𝒑,𝒒𝒒, 𝒓𝒓) = ∑ 𝑤𝑤𝑖𝑖  𝑓𝑓𝑖𝑖(𝒑𝒑,𝒒𝒒, 𝒓𝒓)𝑖𝑖  represents the weighted summation of various objective functions, 
𝒈𝒈𝑒𝑒𝑒𝑒(𝒑𝒑,𝒒𝒒, 𝒓𝒓) the equilibrium equation (see Annex for its expression), and 𝒈𝒈𝑖𝑖(𝒑𝒑,𝒒𝒒) all the other constraints. 
The problem (1) is then solved using sequential quadratic programming (SQP) [9] with the aid of 
analytical derivatives. 

The most straightforward objective is least square fitting to the initial value and can be expressed by 
𝑓𝑓𝐿𝐿𝐿𝐿(𝒙𝒙) = |𝒙𝒙 − 𝒙𝒙0|2, where 𝒙𝒙0 is the initial value. With this objective applied to both nodal position and 
force density, the problem is solved for the closest fit solution in terms of numerical values of 𝒑𝒑 and 𝒒𝒒. 
From a numerical point of view, the least square objective results in an identity matrix for the objective’s 
Hessian, increasing the likelihood of the local step of SQP becoming a positive definite problem. Other 
objectives, such as Laplacian smoothness and soft constraints, as discussed in the paper [2] can be 
incorporated with different weights provide additional preferences to the solution. By default a weakly 
weighted least square objective function is applied with a factor of 0.001 to enhance the convergence. 

This formulation allows to incorporate various constraints in form-finding, while guiding the solution 
towards a specific desired one though a combination of multiple objectives and corresponding weighting 
parameters. 

2.2. Implementation of the form-finding algorithm as a parametric tool 
The form-finding algorithm is integrated into the interactive CAD environment of Grasshopper® for 
Rhinoceros® through the development of a work-in-progress plugin written in C#. Regarding the user 
interface, the authors endeavoured to adhere as closely as possible to the Grasshopper® logic, aiming to 
create an intuitive toolbox that is adaptable to a wide range of form-finding problems. The use of the 
plugin is centred around form-finding models (Fig. 1) that are assembled by an equilibrium constraint, 
additional constraints, and one or more weighted objective functions. The equilibrium constraint is 
represented by a topological graph of linear elements with an initial force (density) value. In addition, 
information about nodal support conditions and external loads is included in the equilibrium constraint. 
Once a form-finding model is assembled, it can be solved in a synchronous or asynchronous way. The 
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asynchronous solving has the advantage of not blocking the main user interface (canvas) of 
Grasshopper®.  

In its current state, the plugin implements various geometric and force-related constraints as shown in 
Figure 1: fixed distance between nodes, equal force in elements, fixed force (density) values, keep node 
on line, keep node on plane, and keep node at specific position. Three objectives are at this time 
implemented: stick as close as possible to the initial geometry (least square formulation), Laplacian 
smoothing of specific elements, and the softening of constraints. The latter “softens” a constraint by 
turning it into a goal or objective, rather than using it as a strict constraint.  

The geometry, loads and constraints of a form-finding model (both in a solved or unsolved state) can be 
viewed with the model viewer (Fig. 2 left). Once a model is solved, the result viewer shows the 
equilibrium shape, the resulting force (density) values, and the reaction forces (Fig. 2 right).  

 

 
Figure 1: Assembly and solving of a form-finding model in the interactive  

parametric Grasshopper® environment (top). Minimalist set of Grasshopper® components that allow to assemble 
and solve form-finding models (bottom). 

 
Figure 2: The unsolved form-finding model as visualised in the model viewer showing the geometry, loads and 

constraints (left) and the solved form-finding model as visualised with the result viewer (right). 

3. Practical design applications 
The following case studies display how the presented method facilitates the design process whilst being 
confronted with various geometrical constraints in the conception of a structural design project. For three 
case studies, a brief context is given and the constraints are explained in detail. Defining the form-finding 
problem is a nuanced task. When a limited set of geometric constraints are imposed on a form-finding 
problem, the geometry has flexibility to adapt and evolve in response to the problem’s requirements, but 
multiple solutions might be possible. Conversely, as geometric constraints become more stringent, the 
finding shifts towards identifying the optimal set of forces within the elements, with the geometry’s form 
being largely predetermined by the constraints. 

3.1. 2-dimensional suspension bridge 
A recent project involved a bicycle bridge, characterised by its suspension design with triangular cable 
configuration and a central supporting pylon that divides the bridge in two asymmetric spans. The deck 
of the bridge consists of discrete concrete plate segments that are post-tensioned into a continuous beam 
after all deck segments are installed. As shown in Fig. 3, the hangers are connected to the main cables 
every 5m and also every 5m to the middle of the deck segments. 40 deck segments are installed in total, 
13 at one side of the pylon and 27 at the other side. 

The post-tensioning of the bridge deck required the use of pendulum elements to connect the hangers to 
the bridge deck (Fig. 4). These pendulum elements can pivot as a way to reduce the impact of the 
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shortening of the deck during and after post-tensioning the entire deck (Fig. 4b). In the absence of these 
pendulum elements, the post-tensioning of the bridge deck would cause unwanted changes in the internal 
forces of the hangers, due to the shift of their longitudinal nodal positions. This is due to the statical 
indeterminacy of the triangulated topology. Once the post-tensioning is done, the rotation of the 
pendulum elements is fixed (Fig. 4c).  

 
Figure 3: Elevation of the cable suspension bridge.  

 
(a)                                                 (b)                                                  (c) 

Figure 4: Concept of the pendulum design and its functioning before and after post-tensioning. 

The pendulum was designed to have a fixed length of 600mm between the cable sockets. Figure 4a 
shows how both hangers are attached to the pendulum with slightly different angles. In order for the 
pendulum to be in equilibrium, the actions of the hangers must result in a net vertical force through its 
pivotal point. As a consequence, the pendulum cannot be positioned symmetrically in relation to the 
pivotal point, but an eccentricity is necessary to ensure equilibrium of the base’s reaction and the cables’ 
actions. From this description it becomes clear that determining this eccentricity of the pendulum 
element is not a straightforward task as it is part of the form-finding formulation. 

 

 

 
(a) 

 
 

 
(b) 

Figure 5: (a) Topological definition and initial geometry of the form-finding of the suspension bridge (left top), 
the applied support conditions and deck loads (left bottom). (b) A close-up of the definition of the pendulum, 
consisting of a horizontal pendulum bar and two elements connected to the base point. A vertical point load is 

applied to the pendulum bases, representing the bridge’s deck load. 

The initial geometry is defined by the cables (Fig. 5a). The pendulum is represented by a triangle formed 
by its basepoint and the two hanger ends. Figure 5b shows a close-up of the pendulum definition. The 
hangers have an initial force density of 1 and the main cable an initial force density of 20. The deck 
nodes (pendulum basepoints) are geometrically constrained and loaded with a vertical point load (value 
2) representing the dead load of the deck. The nodes at the ends of the main cable are supported in all 
directions. The node at the top of the pylon is only supported vertically so that no horizontal load is 
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introduced in the pylon. The nodes of the main cable are geometrically constrained to only move 
vertically to keep an equal horizontal distance. The distance between the cable sockets of the pendulum 
bars is constrained to be 600mm and these nodes can only move horizontally. A representation of the 
constraints as visualised in the parametric implementation is given in Fig. 6. As the form-finding 
definition with this set of geometric constraints has multiple solutions, the objective function will ensure 
convergence towards a unique solution. The least square objective is set to keep as close as possible to 
the initial geometry and force density values. The force density values are chosen such that a suitable 
cable sag is obtained. Figure 7 shows the form-found geometry.  

The presented case study gives a realistic impression of the form-finding of the suspension bridge with 
rather complex constraints such as the integration of the pendulums in the form-finding definition. As 
the set of constraints still allows for multiple solutions, the formulation of the form-finding problem as 
a constrained optimisation problem allows to work towards a unique solution by means of an objective 
function. 

 
 

Figure 6: Visual representation of the applied constraints in the Grasshopper® environment. The top of the 
pendulum is initially positioned without any eccentricity and constrained onto the horizontal plane. The distance 

between the cable sockets of the pendulums is kept constant and the positions of the pendulum base is fixed 
geometrically. The nodes of the main cable can only move vertically. 

 
Figure 7: The initial structure (black) and the converged form-found result (red). It becomes clear that due to the 
fixed pendulum bases and its different cable actions, the top of the pendulum must shift slightly horizontally to 

find an equilibrium state. Notice as well that the action of the main cable on the pylon top is vertical as intended. 

3.2. 3-dimensional self-anchored suspension bridge 
This case study presents a 3-dimensional suspension footbridge of which the entire deck is geometrically 
defined as shown in Fig. 8. The bridge consists of 3 subspans defined by the ends of the footbridge and 
two sets of pylons that bear the main cables. On one side (left), the main cables are supported by two 
separate pylons at both sides of the deck. On the other side (right), the main cables from both sides are 
supported by a single pylon. The pylons’ bases are coinciding with the main girders of the bridge deck, 
where the bridge is supported. As the bridge is a self-anchored bridge, the tension action of the main 
cables is taken by compression in the main girders of the bridge deck. In order to take into account both 
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the elevation of the deck and the in-plane bending of the deck, the entire deck is modelled as a truss and 
included in the form-finding formulation. The ends of the bridge deck are vertically supported and also 
the base of the main pylon is only vertically supported. The set of two smaller pylons are supported at 
their bases in all directions. 

 
 
 
 
 

Figure 8: Elevation and plan of the suspension bridge geometry (top). Clear view on the modelling of the pylons. 
At the right side of the bridge, the main cables are supported by a single pylon that is modelled as a triangle to 

correctly model the distance between the main cables (bottom right). 

 

 

 
 
 
 
 
 

  
(b)                                               (c) 

Figure 9: Overall view on the applied constraints (a). Close up of the defined constraints and the form-found 
result. The geometry of the deck and the small pylons is indeed maintained after form-finding (b). The triangular 

geometry of the main pylon is not altered after form-finding, although its orientation is different after it has 
found its equilibrium after form-finding (c). 

At the deck nodes, a vertical load of 5 is applied and the initial force density values of the hangers is set 
to 5. The main cables are assigned with a positive (tension) force density value of 30, the deck girders 
have an initial negative (compression) force density value of -30. The other deck elements have an initial 
force density value of 0. The initial compression force density value of the small pylons is -15 and -8 
for the main pylon. The applied constraints are the directions of the cables as their nodes should lie 
within planes perpendicular to the bridge’s main axis (Fig. 9a). The small pylons at the left are 
geometrically fixed (Fig. 9b). The main pylon is modelled as a triangle and fixed in its geometry by 
specifying the lengths of the elements; the main pylon can only rotate in the plane perpendicular to the 
main bridge axis, due to the constraints applied to the nodes of the main cable (Fig. 9c). Two least square 

(a) 
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objective functions are applied. The first one is heavily weighted by a factor 1000 and aims to maintain 
the geometry of the deck as much as possible. The second one, weighted by a factor 1, tries to keep the 
main pylon to stick close to its initial position.  

Although the presented case study has got a complex set of geometric constraints and objectives, the 
presented method is capable of finding an equilibrium shape in a parametric environment that meets all 
boundary conditions. Additionally, the user interface enables a visual overview of the applied 
constraints. In the absence of explicit objective functions for the nodes and force densities of the main 
cables, the default objective is the weak (factor 0.001) least square objective applied to the nodal 
positions and elements’ force densities. As a result, the initial force density values, as well as the nodal 
positions, play a primary role in the convergence towards the final solution. The force density values of 
the main cables are chosen in order to obtain a suitable cable sag. Figure 11 shows an example with 
different initial force density values for the girders and the main cables, resulting in different solutions 
and perhaps difficulties in convergence. In order to obtain a suitable result, good initial guesses for either 
the force density values or the initial nodal positions need to be provided. This requires structural 
knowledge and form-finding experience from the user.  

 
Figure 10: Resulting form-found geometry that satisfies all requested constraints and objectives. The horizontal 
action of the main cable ends is indeed taken by the main girders in compression. The reaction force at the main 
pylon is vertical as requested and the reaction forces of the smaller pylons lies in the direction of these pylons. 

The deck geometry has not changed after the form-finding has converged into an equilibrium shape.  

 

 
Figure 11: A non-converged result of the same form-finding problem formulation but with an initial force 

density value of -40 in the main girders and a force density value of 20 in the main cables. It becomes clear that 
the objective to keep the initial deck geometry as close as possible becomes difficult to achieve. Due to the lower 
force density values of the main cables, the main cable will increase in length and sag below the deck level. This 
results in hysteric geometry because of the needed compression in the hangers located under the deck, of which 
the force density values are far from the initial values. The presented result is obtained after reaching a preset 

maximum 1500 iterations and is not in equilibrium either. 

3.3. Form-finding of a geometrically highly constrained cable net 
When the set of applied geometric constraints becomes very restrictive, the geometry of the form-finding 
problem is mostly fixed. The majority of the free variables are the force density values in the members 
as most of the nodal positions are constrained. This case study searches for an equilibrated set of Y-
shaped frames that are connected by pretensioned cables as shown in Fig. 12. The assembly of frames 
and cables form the skeleton for the mesh of an aviary enclosure. Since the end nodes of all Y-shaped 
frames are defined architecturally and constrained geometrically, they steer the form-finding 
formulation. The frames are supported at their base and the cables are supported at their ends. The central 
nodes of the Y-frames are free to move and the nodes where the cables form a cross are constrained to 
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stay within a specific vertical plane. A cable net with specific prestress needs to be found so that a self-
stressed equilibrium can be achieved without compromising the frames’ chosen position and orientation. 
A Laplacian smoothing objective, weighted with a factor 1, is applied to the geometry of the cables. 

Figure 13 shows the initial form-finding model and the resulting geometry and internal forces. Due to 
the applied constraints, the geometry of the prestressed system has not changed much. The nodes where 
the cables form a cross and the central nodes of the Y-frames have changed position to ensure an 
equilibrated self-stressed cable net structure. The presented method is very much suited for these kinds 
of problems as one knows that one or more solutions exist and the number of free variables (the position 
of the free nodes and the force density values) is limited. Through an objective function, the method 
allows to work towards a unique solution.  

 

 
Figure 12: Plan and elevation of the pre-tensioned cable structure. 

 
Figure 13: The form-finding model (top) is based on a given topology. All cable ends are supported, as well as 

the Y-shaped frames’ base nodes. The position of the outer nodes of the Y-shaped frames are geometrically 
constrained. The initial compression force density value in the frame is set to -10. The cables have an initial force 
density value of 10. View of the converged form-finding model (bottom) with indication of the prestress force in 

the cables, compression forces in the frames, and the reaction forces. 

The role of the objective function becomes clear by the example in Figure 14. In this plan view, the 
cable geometry of two solutions with the same constraints are shown, but with different objective 
functions. In one case, Laplacian smoothing is used weighted with a factor 1 as objective for the cable 
geometry. In the other case, a least square objective function is applied with a weighting factor 1 to the 
force density values of the cables. Although the geometrical differences are rather small, it shows the 
influence to converge towards a specific goal when multiple solutions can be found for the given 
constraints. 

Figure 15 shows the principle of the Y-shaped frames. The presented form-finding method is based on 
axial member forces only. As the end nodes of the Y-shape are geometrically constrained. The shape of 
the Y-shape can be form-found by ensuring this central node’s equilibrium and its subsequent position 
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(Fig. 15b). An architectural desire was to use identical symmetrical Y-shaped frames (Fig. 15c). It turned 
out that adding this additional constraint could not lead to a solution due to the overall plan and the shape 
of the cable net. This project deals with this additional constraint by making use of sufficient bending 
resistance of symmetrically designed frames. As long as the resultant reaction force of the frame 
coincides with its pinned support, equilibrium can be ensured by considering the Y-frame as a rigid body 
(Fig. 15c). 

 
Figure 14: Objective functions allow to converge towards a specific goal and solution when multiple solutions 

can be found for the given constraints. Even in the highly constrained case study of the cable net, multiple 
solutions are possible.  

 

 
(a)                                      (b)                                     (c) 

Figure 15: Overview of line model. Frames, cables, design freedom, design constraints 

4. Discussion 
A critical insight from the exploration is the effect of the initial force density values on the convergence 
of the model when the least square objective is used. In both case studies of the suspension bridges, the 
force density values of the main cable were chosen to obtain a suitable sag of the cable. Due to the nature 
of the numerical implementation, this is normal and expected behaviour, but might also influence the 
convergence of the entire model. The further these initial values are from the solution, the more difficult 
a successful convergence will be. This underscores the necessity for structural designers to possess a 
thorough understanding of the problem’s constraints, objective functions and the ability to estimate well 
the force density values and the final geometry. The sensitivity to initial values when using the least 
square objective highlights a potential barrier for designers lacking in-depth structural intuition and 
experience.  

From experience, the authors noticed that it is practical to gradually build up the form-finding model in 
terms of complexity. One starts with solving a very rudimentary form-finding model by which better 
initial force density values can be used later in a more complex model where more geometric constraints 
are applied. This approach also works when gradually refining or subdividing the geometry like in the 
second case study about the 2-dimensional suspension bridge with the pendulum elements. 

5. Conclusion 
This paper introduced a form-finding method formulated as a constrained optimisation where geometry 
and force densities are treated as concurrent variables while maintaining static equilibrium. Through the 
lens of three case studies based on real design projects, not only the application of the method is shown, 
but also the need for explicit geometric constraint handling in practice becomes clear through a detailed 
description of these constraints in a realistic design setting. The presented method showed its capability 
to deal with geometrical constraints effectively during form-finding. Using an objective function, the 
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method ensures to converge towards a unique single solution that meets all the constraints, even when 
multiple solutions exist that meet the set of constraints. Future research should aim to refine the method’s 
user interface, making it more accessible to designers of varying experience levels. Furthermore, a 
detailed analysis of the method’s convergence and a comparative study with other methods would 
greatly benefit the ongoing development of the presented form-finding approach. 

Annex – formulation of equilibrium constraint  
Compared to the original FDM, the equilibrium equation contains a minor modification through the 
introduction of reaction variable 𝒓𝒓 and can be expressed by the following. 
 𝒈𝒈𝑒𝑒𝑒𝑒(𝒑𝒑,𝒒𝒒, 𝒓𝒓) = 𝑪𝑪3𝑇𝑇𝑸𝑸𝑪𝑪3𝒑𝒑 + 𝑺𝑺𝑇𝑇𝒓𝒓 − 𝒇𝒇𝑒𝑒𝑒𝑒 = 𝟎𝟎 (2) 

Here, 𝑪𝑪3𝑇𝑇, 𝑸𝑸, 𝑺𝑺 denotes respectively the connectivity matrix, the diagonal matrix of the vector 𝒒𝒒, and the 
support mapping matrix. The vector 𝒇𝒇𝑒𝑒𝑒𝑒 denotes the external loads. This formulation allows for 
separating geometric fixity and force support. Furthermore, no permutation is required to separate the 
fixed degrees of freedom. The advantage of using force density instead of force as variable is that the 
analytical derivatives can be described in a simple closed expression as follows 

 𝑱𝑱𝑒𝑒𝑒𝑒  = �
∂𝒈𝒈𝑒𝑒𝑒𝑒
𝜕𝜕𝒑𝒑

∂𝒈𝒈𝑒𝑒𝑒𝑒
𝜕𝜕𝒒𝒒

∂𝒈𝒈𝑒𝑒𝑒𝑒
𝜕𝜕𝒓𝒓

� = [𝑪𝑪3𝑇𝑇𝑸𝑸𝑪𝑪3 𝑪𝑪3𝑇𝑇𝑼𝑼3 𝑺𝑺𝑇𝑇], (3) 

where 𝑼𝑼3 is a coordinate difference matrix. 
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